
EXPERIMENTS OF RECURRENT NEURAL 

NETWORK MODELS FOR INTRUSION DETECTION 

ON NSL-KDD DATASET 

UNIVERSITI KEBANGSAAN MALAYSIA 

TEO WEI CHEN

Pus
at 

Sum
be

r 

FTSM



EXPERIMENTS OF RECURRENT NEURAL NETWORK MODELS FOR 

INTRUSION DETECTION ON NSL-KDD DATASET 

2024 

TEO WEI CHEN 

PROJECT SUBMITTED IN PARTIAL FULFILMENT FOR THE DEGREE OF 

MASTER OF CYBER SECURITY 

FACULTY OF INFORMATION SCIENCE AND TECHNOLOGY 

UNIVERSITI KEBANGSAAN MALAYSIA 

BANGI

Pus
at 

Sum
be

r 

FTSM



EXPERIMENTS OF RECURRENT NEURAL NETWORK MODELS FOR 

INTRUSION DETECTION ON NSL-KDD DATASET 

2024 

TEO WEI CHEN 

PROJEK YANG DIKEMUKAKAN UNTUK MEMENUHI SEBAHAGIAN 

DARIPADA SYARAT IJAZAH SARJANA KESELAMATAN SIBER 

FAKULTI TEKNOLOGI DAN SAINS MAKLUMAT 

UNIVERSITI KEBANGSAAN MALAYSIA 

BANGI

Pus
at 

Sum
be

r 

FTSM



iii 

 

DECLARATION 

I hereby declare that the work in this thesis is my own except for quotations and 

summaries which have been duly acknowledged. 

19 February 2024 TEO WEI CHEN 

P117987 

  

Pus
at 

Sum
be

r 

FTSM



iv 

 

ACKNOWLEDGEMENT 

I would like to express my sincere gratitude to my project supervisor Mohd Zamri 

Murah and my examiner Dr. Wan Fariza for their continuous patience and motivational 

support. Their guidance and knowledge input has helped me in successfully completing 

this project within the recommended timeframe. Moreover, I would also like to extend 

my thanks to the Program Coordinator, all the lecturers of Master of Cybersecurity and 

staff from the Faculty of Information Science & Technology, for their constant support 

and encouragement during my academic journey. 

Furthermore, I would like to express my heartfelt gratitude to my parents, brothers, 

and all the course mates, thanks for their supports and encouragement throughout my 

academic journey. 

Lastly, I express my sincere thanks to all those who have contributed to this work 

in one way or another. My hope is that this study will, to some extent, contribute to the 

field of research and serve as a reference for future researchers. 

 

Pus
at 

Sum
be

r 

FTSM



v 

 

ABSTRAK 

Dalam masyarakat moden hari ini, bilangan serangan siber berkembang pesat, dan kita 

menghadapi serangan pencerobohan rangkaian moden dan kompleks setiap hari, 

walaupun dalam rangkaian komputer yang selamat. Walau bagaimanapun, sistem 

pengesanan pencerobohan tradisional berdasarkan pemilihan dan klasifikasi ciri 

mempunyai beberapa kelemahan, seperti memproses maklumat berlebihan dan 

meningkatkan masa pengiraan. Untuk mengelakkan pelanggaran, sangat diperlukan 

bagi pentadbir keselamatan untuk mengesan penceroboh dan menghalangnya 

memasuki rangkaian. Teknik pembelajaran mesin digunakan untuk menyelesaikan jenis 

masalah ini, tetapi mereka tidak dapat menggeneralisasi kerana mereka gagal 

mendapatkan hubungan antara ciri-ciri. Dalam kertas ini, kami membincangkan 

bagaimana melakukan eksperimen menggunakan seni bina rangkaian saraf berulang 

RNN (Simple-RNN, LSTM, dan GRU), misalnya, menggunakan pemprosesan data, 

klasifikasi serangan, pelbagai jenis parameter, dan saiz kumpulan. Kami 

membandingkan setiap seni bina RNN pada set data pencerobohan rangkaian (NSL-

KDD) dan menyimpulkan dengan masa dan hasil ketepatan yang berbeza. Pada 

akhirnya, IDS berasaskan RNN yang dicadangkan dalam kertas ini, diarkibkan dengan 

klasifikasi binari untuk RNN-IDS dengan 64 unit, mempunyai ketepatan 79.33%, dan 

multi-klasifikasi untuk LSTM-IDS dengan 256-unit mempunyai ketepatan 69.50%. 

Hasil penyelidikan dalam kertas ini bertujuan untuk memilih model RNN yang paling 

sesuai untuk setiap klasifikasi, kaedah prapemprosesan data dan penalaan 

hiperparameter untuk sistem pengesanan pencerobohan pembelajaran mendalam. 
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ABSTRACT 

In modern society today, the rapid surge in cyberattacks presents an escalating 

challenge, with sophisticated network intrusion attempts occurring regularly even 

within ostensibly secure computer networks. Despite the prevalence of traditional 

intrusion detection systems relying on feature selection and classification, they grapple 

with certain limitations, notably the processing of redundant information leading to 

increased computational time. The urgency for security administrators to detect and 

thwart intruders from breaching network defences is undeniable. While machine 

learning techniques have been employed to address these issues, their efficacy is 

hindered by a limited ability to generalize, often failing to discern intricate relationships 

among features. In this paper, we discussed how to do an experiment using RNN 

recurrent neural network architectures (Simple-RNN, LSTM, and GRU), for example, 

using data preprocessing, classification of the attacks, different types of parameters, and 

batch size. We compared each of the RNN architectures on network intrusion datasets 

(NSL-KDD) and concluded with different time and accuracy results. At the end, the 

RNN-based IDS proposed in this paper, archived with binary classification for RNN-

IDS with 64 units, had an accuracy of 79.33%, and multi-classification for LSTM-IDS 

with 256 units had an accuracy of 69.50%. The research results in this paper aim to 

choose the most suitable RNN models for each of the classification, data preprocessing 

methods, and hyperparameter tuning for deep learning intrusion detection systems. 

 

 

 

Pus
at 

Sum
be

r 

FTSM



vii 

 

TABLE OF CONTENTS 

 Page 

DECLARATION iii 

ACKNOWLEDGEMENT iv 

ABSTRAK v 

ABSTRACT vi 

TABLE OF CONTENTS vii 

LIST OF TABLES x 

LIST OF ILLUSTRATIONS xii 

LIST OF ABBREVIATIONS xv 

CHAPTER I INTRODUCTION 

1.1 Introduction 1 

1.2 Research Background 3 

1.2.1 Intrusion Detection System (IDS) 3 
1.2.2 Overview of Intrusion Detection Technology 7 
1.2.3 Intrusion Detection Classification 9 
1.2.4 Challenges With Intrusion Detection System 9 
1.2.5 Deep Learning Architecture (DL) 11 
1.2.6 Deep Learning and Intrusion Detection System 

(DL + IDS) 13 

1.3 Problem Statement 15 

1.4 Research Objectives 17 

1.5 Research Questions 18 

1.6 Significance of Research 18 

1.7 Research Scope 19 

1.8 Thesis Organization 19 

CHAPTER II LITERATURE REVIEW 

2.1 Introduction 21 

2.2 Deep Learning Models 22 

2.2.1 Deep Neural Network (DNN) 23 
2.2.2 Convolutional Neural Network (CNN) 25 
2.2.3 Recurrent Neural Network (RNN) 26 
2.2.4 Long Short-term Memory Network (LSTM) 27 

Pus
at 

Sum
be

r 

FTSM



viii 

 

2.2.5 Gated Recurrent Unit (GRU) 28 

2.3 Network Intrusion Detection Dataset 30 

2.3.1 NSL-KDD 30 
2.3.2 UNSW-NB15 31 
2.3.3 CICIDS2017 32 
2.3.4 CSE-CIC-IDS2018 34 
2.3.5 Commonly Used Dataset in IDS Based on 

Various Deep Learning 35 

2.4 Current Research In Intrusion Detection System 37 

2.5 Comparative Analysis 44 

2.6 Conclusion 45 

CHAPTER III METHODOLOGY 

3.1 Introduction 46 

3.2 Research Design 47 

3.3 Data Collection 48 

3.3.1 Multiclassification Attacks 50 

3.4 Data Preprocessing 52 

3.4.1 Numericalization 52 
3.4.2 Normalization 53 

3.5 Deep Learning Modelling 54 

3.5.1 Criteria For Model Selection 54 
3.5.2 Model Selection 55 

3.6 Model Training 56 

3.7 Model Detection 56 

3.8 Model Evaluation 57 

3.9 Result 58 

CHAPTER IV EXPERIMENT AND ANALYSIS 

4.1 Introduction 59 

4.2 Experiment Environment 59 

4.2.1 Hardware 59 
4.2.2 Software 60 

4.3 Experimental Design 60 

4.3.1 Split The Dataset 61 
4.3.2 Data Preprocessing 66 
4.3.3 Data Separation 66 
4.3.4 Reshape the Train and Test Dataset 67 

Pus
at 

Sum
be

r 

FTSM



ix 

 

4.4 Hyperparameter Tuning 67 

4.4.1 Parameters 68 
4.4.2 Sigmoid 68 
4.4.3 Softmax 68 
4.4.4 Dropout Layer 69 
4.4.5 Dense Layer 69 
4.4.6 Flatten Layer 69 

4.5 Analysis of Experiment Results 70 

4.5.1 Experiment Architecture 70 
4.5.2 2-Class of Model Summary 71 
4.5.3 5-Class of Model Summary 76 
4.5.4 2-Class Classification (Binary-Class) 82 
4.5.5 5-Class Classification (Multi-Class) 83 

4.6 Discussion and Analysis 88 

4.6.1 2-Class Classification (Batch Size 256) 89 
4.6.2 5-Class Classification (Batch Size 256) 90 
4.6.3 Conclusion (Batch Size 256) 91 

CHAPTER V CONCLUSION AND FUTURE WORKS 

5.1 Introduction 95 

5.2 Summary of Research 95 

5.3 Future Work 96 

REFERENCES 97 

APPENDICES 

Appendix A The Best Binary Classification 103 

Appendix B The Best Multi Classification 113 

 

Pus
at 

Sum
be

r 

FTSM



x 

 

LIST OF TABLES 

Table No. Page 

Table 2.1 Comparison of RNN models 29 

Table 2.2 Comparison of KDDCup99 and NSL-KDD Dataset 30 

Table 2.3 Count of Normal and Malicious Data in NSL-KDD 30 

Table 2.4 Training and Testing Connection Records of Partial 

Dataset of UNSW-NB15 31 

Table 2.5 CICIDS 207 Train and Test Dataset 33 

Table 2.6 List of Attack Types of CSE-CIC-IDS2018 34 

Table 2.7 Commonly used Models and Datasets in Intrusion 

Detection System 35 

Table 2.8 Comparison of Deep Learning Models in IDS 44 

Table 3.1 Features of NSL-KDD Dataset 48 

Table 3.2 Categories of Attacks 51 

Table 3.3 Total instances by attack type in the NSL-KDD Dataset- 51 

Table 4.1 Binary-Class for Train Dataset 62 

Table 4.2 Multi-Class for Train Dataset 63 

Table 4.3 Binary-Class for Test Dataset 64 

Table 4.4 Multi-Class for Test Dataset 65 

Table 4.5 Results of 2-class (binary-class) 82 

Table 4.6 Results of 5-class (multi-class) 83 

Table 4.7 Comparison of 2-class classification based on highest 

accuracy for Testing Dataset 88 

Table 4.8 Comparison of 5-class classification based on highest 

accuracy for Testing Dataset 88 

Table 4.9 Results of 2-class (Batch Size = 256) 89 

Table 4.10 Results of 5-class (Batch Size = 256) 90 

Table 4.11 Summarize of RNN for 128 & 256 Batch Size 92 

Pus
at 

Sum
be

r 

FTSM



xi 

 

Table 4.12 Summarize of LSTM for 128 & 256 Batch Size 93 

Table 4.13 Summarize of GRU for 128 & 256 Batch Size 94 

 

Pus
at 

Sum
be

r 

FTSM



xii 

 

LIST OF ILLUSTRATIONS 

Figure No. Page 

Figure 1.1 Design flow for IDS (Swanagan, 2019) 4 

Figure 1.2 Network-based Intrusion Detection System 

(GeeksForGeeks, 2019) 5 

Figure 1.3 Host-based Intrusion Detection System (GeeksForGeeks, 

2019) 6 

Figure 1.4 Overview Intrusion Detection System (IDS) (Aljanabi et 

al., 2021) 7 

Figure 1.5 IDS Deployment Environments and Implemented 

Techniques of Detection (Ahmed et al., 2022) 8 

Figure 1.6 Comparison of Simple Neural Network and Deep Neural 

Networks (Gunarathna et al., 2020) 12 

Figure 1.7 Deep Learning Architecture (Samaya Madhavan & Tim 

Jones, 2021) 12 

Figure 1.8 Intrusion Detection System Classification Taxonomy 

(Ahmad et al., 2020) 14 

Figure 1.9 IDS Challenges (Aljanabi et al., 2021) 16 

Figure 2.1 Relationship between Artificial Intelligence, Machine 

Learning and Deep Learning (Shiri et al., 2023) 22 

Figure 2.2 Proposed Deep Neural Network Topology (Maithem & 

Al-sultany, 2021) 23 

Figure 2.3 Deep Neural Network Architecture for Anomaly-based 

IDS (Tama & None Kyung-Hyune Rhee, 2017) 24 

Figure 2.4  Deep Neural Network Architecture for Multi-

Classification (Tang et al., 2020) 24 

Figure 2.5 CNN model Intrusion Detection System (Liao et al., 

2024) 25 

Figure 2.6  Standard RNN (Kasongo, 2022) 26 

Figure 2.7 A unrolled standard RNN (Kasongo, 2022) 27 

Figure 2.8 Long Short-Term Memory (LSTM) (Zargar, 2021) 27 

Pus
at 

Sum
be

r 

FTSM



xiii 

 

Figure 2.9 Gated Recurrent Unit (GRU) Implementation (Kilinc & 

Yurtsever, 2022) 28 

Figure 2.10 RNN, LSTM and GRU models for Intrusion Detection 

System (Toharudin et al., 2021) 29 

Figure 2.11 Detection rates for the types of attacks (Ashiku & Dagli, 

2021) 37 

Figure 2.12 DL Approaches for Network Intrusion Detection (Ahmed 

et al., 2022) 39 

Figure 3.1 Overview of Experiment Flows (Yee Mon Thant et al., 

2023) 47 

Figure 3.2 One hot Encoder on Protocol Type Column (Maithem & 

Al-sultany, 2021) 52 

Figure 3.3 Features for Protocol Type, Service and Flag (Saporito, 

2019) 53 

Figure 4.1 RNN/LSTM/GRU Structure (Kasongo, 2022) 61 

Figure 4.2 Pie Chart for Binary-Class Train Dataset 62 

Figure 4.3 Pie Chart for Multi-Class Train Dataset 63 

Figure 4.4 Pie Chart for Binary-Class Test Dataset 64 

Figure 4.5 Pie Chart for Multi-Class Test Dataset 65 

Figure 4.6 One-Hot-Encoding 66 

Figure 4.7 Train-Test Split 67 

Figure 4.8 Reshape the Crucial 67 

Figure 4.9 RNN Diagram for the Experiments 70 

Figure 4.10 RNN 2-Class 64 Units 71 

Figure 4.11 LSTM 2-Class 64 Units 72 

Figure 4.12 GRU 2-Class 64 Units 72 

Figure 4.13 RNN 2-Class 128 Units 73 

Figure 4.14 LSTM 2-Class 128 Units 73 

Figure 4.15 GRU 2-Class 128 Units 74 

Figure 4.16 RNN 2-Class 256 Units 74 

Pus
at 

Sum
be

r 

FTSM



xiv 

 

Figure 4.17 LSTM 2-Class 256 Units 75 

Figure 4.18 GRU 2-Class 256 Units 75 

Figure 4.19 RNN 5-Class 64 Units 76 

Figure 4.20 LSTM 5-Class 64 Units 77 

Figure 4.21 GRU 5-Class 64 Units 77 

Figure 4.22 RNN 5-Class 128 Units 78 

Figure 4.23 LSTM 5-Class 128 Units 78 

Figure 4.24 GRU 5-Class 128 Units 79 

Figure 4.25 RNN 5-Class 256 Units 80 

Figure 4.26 LSTM 5-Class 256 Units 80 

Figure 4.27 GRU 5-Class 256 Units 81 

Figure 4.28 Confusion Matrix for 2-Class RNN 64 Units 84 

Figure 4.29 Accuracy Graph for 2-Class RNN 64 Units 85 

Figure 4.30 Loss Graph for 2-Class RNN 64 Units 85 

Figure 4.31 Confusion Matrix for 5-Class LSTM 256 Units 86 

Figure 4.32 Accuracy Graph for 5-Class LSTM 256 Units 87 

Figure 4.33 Loss Graph for 5-Class LSTM 256 Units 87 

 

 

Pictures No. Page 

 

 

 

Pus
at 

Sum
be

r 

FTSM



xv 

 

LIST OF ABBREVIATIONS 

AE  Auto Encoder  

AI Artificial Intelligence 

BLSTM Bidirectional Long Short-Term Memory 

CNN Convolution Neural Network 

DDoS Distributed Denial of Service 

DL Deep Learning 

DNN Deep Neural Network 

DoS Denial of Service 

FNN Feedforward Neural Network  

FN  False Negative  

FP  False Positive 

GRU Gated Recurrent Unit 

HIDS Host-based Intrusion Detection System 

IDS Intrusion Detection System 

LC Logistic Regression 

LSTM Long Short-Term Memory 

ML Machine Learning 

MLP  Multi-Layer Perceptron 

NIDS Network-based Intrusion Detection System 

RF Random Forest 

RNN Recurrent Neural Network 

R2L Remote-to-Local 

SVM Support Vector Machine 

TN  True Negative  

TP  True Positive 

U2R Synthetic Minority Oversampling 

 

Pus
at 

Sum
be

r 

FTSM



 

 

CHAPTER I  

 

 

INTRODUCTION 

1.1 INTRODUCTION 

Nowadays, the internet has become the most common technology capable of meeting 

every human need. Dialup, broadband, Ethernet, and wireless technologies are used to 

link all PCs and smart gadgets to the internet. Unfortunately, because the internet is the 

primary link connecting all these smart gadgets, it may expose people to a broad range 

of potential hazards. An illegal action on a network technology is referred to as a 

network intrusion. Network intrusion sometimes include the theft of valuable network 

resources and virtually always compromise network or data security.  

Computer networks becoming more essential because of growing usage in various 

areas and applications. Businesses adopt a defensive stance against network attacks, 

employing established security tools like firewalls, anti-spam protocols, and antivirus 

software. Nonetheless, these protective measures reveal a limitation, they struggle to 

detect emerging or intricate threats. Consequently, Network Intrusion Detection 

Systems (NIDS) have evolved into a secondary defence layer, actively overseeing 

network traffic to flag any potential intrusions. This technology serves as a highly 

efficient defensive mechanism, adept at identifying and mitigating complex cyber 

threats and attacks (Hnamte et al., 2023). 

NIDS serves as a valuable tool in identifying an array of network threats, 

encompassing distributed denial-of-service (DDoS) attacks, worms, and viruses. Its 

effectiveness relies heavily on the triumvirate of reliability, precision, and swift 

detection capabilities. A significant amount of research has been dedicated to Network 

Intrusion Detection Systems (NIDS), but there's still room for improvement, especially 

in reducing false alarms and boosting detection accuracy. To tackle these issues, various 
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machine learning (ML) techniques are being utilized within NIDS to minimize false 

positives and enhance the system's ability to detect threats accurately. Among these 

approaches, deep learning (DL) stands out as an advanced methodology contributing to 

the evolution of NIDS capabilities (Ahmed et al., 2022). 

In this project, we do an investigation into the cutting-edge realm of intrusion 

detection by harnessing the power of deep learning models, specifically in Deep Neural 

Network (DNN), Convolutional Neural Network (CNN), Recurrent Neural Networks 

(RNN) models, which are Simple-RNN, Long Short-Term Memory (LSTM) networks 

and Gated Recurrent Unit (GRU). Deep learning, a subfield of machine learning, has 

demonstrated remarkable capabilities in extracting complex patterns and features from 

data, making it a promising avenue for enhancing intrusion detection capabilities. The 

choice of RNN models for intrusion detection is driven by their ability to capture 

temporal dependencies, learn complex patterns, handle variable-length inputs, and 

effectively model contextual information inherent in network traffic data. The NSL-

KDD dataset from the Canadian Institute for Cybersecurity (the updated version of the 

original KDD Cup 1999 Data (KDD99) is used in this project. 

At the end of this project, we done the experiments by evaluate and compare the 

performance for each of the RNN models when applied to intrusion detection in contrast 

to traditional IDS methods. This performance evaluation encompasses several key 

aspects, including accuracy, efficiency, adaptability, and scalability. By investigating 

the strengths and weaknesses of all the RNN models in the context of intrusion 

detection, we aim to provide insights that can inform the development of more robust 

and resilient security measures for the digital landscape. 
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1.2 RESEARCH BACKGROUND 

1.2.1 Intrusion Detection System (IDS) 

In the 1980s, cybersecurity saw a game-changing moment with the emergence of 

intrusion detection systems (IDS). These initial systems were quite straightforward, 

relying on predefined rules to signal any suspicious activities already on their radar. 

James P. Anderson, a trailblazer in computer security, introduced this concept through 

a report he authored for the U.S. Air Force in 1980. Anderson's pioneering work laid 

the essential groundwork for the earliest IDS models, which primarily sifted through 

system logs to spot potential security breaches (Frąckiewicz, 2023). 

An intrusion detection system (IDS) acts as a vigilant overseer, continuously 

monitoring network traffic to identify any unusual or suspicious activities, promptly 

alerting the administrator upon detection. The primary function of an IDS lies in the 

detection of anomalous activities and subsequent reporting to the network 

administrator. Initially implemented alongside firewalls, IDS proves to be a potent 

technique capable of effectively managing various security attacks and identifying 

abnormal behaviours within a target application or computer. Within the realm of IDS 

systems, two distinctive methodologies play a prominent role: signature-based (misuse) 

detection and anomaly-based detection. The signature-based approach focuses on 

pinpointing known attacks through methods such as pattern matching or rule-centric 

techniques. Conversely, anomaly detection takes a broader approach, aiming to uncover 

both familiar and unfamiliar attacks by closely analysing their behavioural 

characteristics. This dual approach allows IDS to provide a robust defence against a 

spectrum of potential security threats. (Althubiti et al., 2018).  

Misuse detection, reliant on attack signatures, operates through multi-class 

classification, targeting known malicious behaviours. Yet, its drawback lies in missing 

new attacks without recognizable signatures in the IDS database. Still, these systems 

excel in accurately pinpointing known malicious behaviours and their variations. On 

the flip side, anomaly detection-based IDS methods shine in uncovering new attacks by 

analysing users' typical behaviour profiles. However, their classification is limited to 

binary, distinguishing solely between normal and anomalous behaviour. This method 

relies on deviations from norms, allowing for the discovery of previously unseen threats 
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while categorizing behaviour in only two distinct groups. (Lansky et al., 2021). Figure 

1.1 shows the design flow for IDS (Swanagan, 2019). 

 

Figure 1.1 Design flow for IDS (Swanagan, 2019) 

Numerous methods exist for promptly identifying potentially harmful network 

activities, aiming to curtail or avert potential damage. Intrusion Detection Systems 

(IDSs) stand out as pivotal network security technologies, actively scrutinizing and 

analysing network traffic to pinpoint irregularities or recognize patterns (fingerprints) 

indicative of previously encountered intrusive activities. Within the realm of IDS, two 
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primary categories emerge: the Network Intrusion Detection System (NIDS) and the 

Host-Based Intrusion Detection System (HIDS). 

1. Network-based Intrusion Detection Systems (NIDSs) play a crucial role in 

tracking and assessing all network traffic flowing to and from individual devices. 

These systems are strategically placed within the network infrastructure to 

analyze the traffic originating from all connected devices. By observing the 

entirety of passing traffic within the subnet, NIDS compares this data against a 

database of known attack signatures. When an attack is identified or unusual 

behavior is detected, the system generates an alert to notify the administrator. 

For instance, situating a NIDS on the subnet containing firewalls allows it to 

scrutinize attempts aimed at breaching the firewall's defenses. In the figure 1.2 

below shows the network-based intrusion detection system (GeeksForGeeks, 

2019). 

 

Figure 1.2 Network-based Intrusion Detection System (GeeksForGeeks, 2019) 
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2. Host-based intrusion detection systems (HIDSs) focus on tracking and 

analyzing the internal components of an operating system, including crucial 

system files. Deployed on individual hosts or devices within the network, HIDSs 

monitor the inbound and outbound packets specific to the device, promptly 

alerting administrators upon detecting any suspicious or malicious activities. 

One of the key functionalities involves creating snapshots of the system's 

existing files and comparing them against previous snapshots. Any alterations 

or deletions in these critical system files trigger an alert, prompting further 

investigation by the administrator. Notably, HIDSs find application in 

safeguarding mission-critical machines that are anticipated to maintain a 

consistent layout without substantial changes. In the figure 1.3 below shows the 

host-based intrusion detection system (GeeksForGeeks, 2019). 

 

Figure 1.3 Host-based Intrusion Detection System (GeeksForGeeks, 2019) 
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1.2.2 Overview of Intrusion Detection Technology 

IDS systems detect threats by continuously monitoring packets traversing the network. 

They're adept at identifying both malicious and abnormal activities originating from 

internal and external sources. In the figure 1.4 below summarize the overview of the 

IDS for types, techniques, and detection mechanisms (Aljanabi et al., 2021). 

 

Figure 1.4 Overview Intrusion Detection System (IDS) (Aljanabi et al., 2021) 

However, IDS encounters challenge due to the inherently uneven distribution of 

data and the immense volumes of network traffic, posing obstacles to effective threat 

detection and analysis. 

IDS actively monitors information sources like networks and computers, focusing 

on reporting any unauthorized activities or accesses. It collates and scrutinizes data from 

multiple network sources and systems, conducting thorough analyses to identify 

potential threats and attacks. Figure 1.5 provides a condensed overview depicting how 

IDS operates within different deployment environments and employs various detection 

techniques. The field of intrusion detection encompasses a wide array of methods, 

including machine learning-based approaches, data mining methodologies, and 

statistical techniques. Ranging from tiered monitoring configurations to integration 

with antivirus software, IDS exists in diverse implementations, facilitating 

comprehensive surveillance of network traffic across various infrastructures (Ahmed et 

al., 2022). 
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Figure 1.5 IDS Deployment Environments and Implemented Techniques of Detection (Ahmed 

et al., 2022) 
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1.2.3 Intrusion Detection Classification 

Unauthorized access attempts aimed at infiltrating a computer network constitute 

intrusions, seeking to breach security protocols. IDS, short for Intrusion Detection 

System, operates as software designed to identify and signal security breaches within a 

network. Its core purpose revolves around scrutinizing the behaviour of hosts and 

network activities to uncover and flag potentially malicious actions or activities 

(G.Janani Pandeeswari & S. Jeyanthi, 2022). The classification of intrusion detection 

systems can be delineated into distinct classes: 

1. The examination of incoming network traffic falls under the purview of a system 

known as NIDS (Network Intrusion Detection System). 

2. The vigilant monitoring of critical files within the operating system 

characterizes another type of system labelled as "Host-based Intrusion Detection 

Systems (HIDS)." 

3. These classifications are further refined, with commonly used variants hinging 

on the fundamental principles of signature and anomaly detection. 

1.2.4 Challenges With Intrusion Detection System 

In today's rapidly evolving data landscape, the effectiveness of current intrusion 

detection methods within network security is diminishing. Adapting to the modern 

network terrain necessitates intrusion detection technology to evolve and harmonize 

with the dynamic environment. The complexity of contemporary networks poses a 

daunting hurdle in isolating intrusion detection features from the vast sea of data, 

thereby persistently plaguing intrusion detection techniques with challenges. These 

challenges are false alarm rate, low detection rate, unbalanced datasets, and response 

time. 
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a. Slow detection speed 

In today's landscape of escalating big data, establishing a comprehensive database of 

characteristic behaviours faces formidable challenges. The sheer volume presents 

hurdles in database maintenance and updates, complicating these essential tasks. The 

emergence of new intrusion types, adept at clever disguises and exhibiting variability, 

notably diminishes detection performance, leading to a surge in missed detections and 

false alarms (Arshad et al. 2020). 

b. Low detection rate, high false alarm rate and leakage rate 

Signature or rule-based IDS typically contend with a specific level of false positive (FP) 

alarms, struggling to identify newly emerging attack patterns. There's an anticipation 

for IDSs to demonstrate precision in FP detection, but these systems often fall short in 

detecting innovative attack forms. ID systems relying on stateful protocol analysis 

showcase varied detection efficiencies, contingent upon the depth of their profile 

definition. However, a significant hurdle lies in maintaining current profiles, especially 

as protocols continuously evolve, posing a constant challenge to keep them up to date. 

(Aljanabi et al., 2021). 

c. Unbalanced datasets 

Creating anomaly IDS systems with sophisticated features poses substantial challenges, 

particularly in the realm of misuse detection. This complexity contributes to an elevated 

occurrence of false alarms, often paired with a diminished detection rate. Additionally, 

the prevalence of unbalanced datasets presents a significant hurdle, profoundly 

influencing the evaluation of the models used within these systems. (Arshad et al. 2020). 
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1.2.5 Deep Learning Architecture (DL) 

Deep learning represents a specialized branch within the broader field of machine 

learning, characterized by the utilization of neural networks featuring multiple layers, 

commonly referred to as deep neural networks. The primary objective is to tackle 

intricate tasks by acquiring hierarchical representations of data. Drawing inspiration 

from the intricate structure and functioning of the human brain, these networks are 

composed of interconnected nodes arranged into layers. At each layer, information 

undergoes processing, and distinctive features are extracted, with the deeper layers 

delving into progressively abstract and intricate representations (Marcus, 2018). 

Deep learning's origins date back to 1943, when Walter Pitts and Warren 

McCulloch devised a computer model inspired by the neural networks within the human 

brain. Their approach, termed "threshold logic," blended algorithms and mathematical 

principles to replicate cognitive processes. Subsequently, the evolution of Deep 

Learning has been relatively continuous, save for two notable interruptions linked to 

the notorious periods of Artificial Intelligence winters (Foote, 2017). 

Figure 1.6 illustrates a comparison between a simple neural network and a deep 

learning neural network. The additional layers in deep neural networks significantly 

enhance computational capabilities, enabling them to achieve remarkable performance 

across various tasks (Gunarathna et al., 2020). Conversely, Figure 1.7 showcases the 

prevalent deep learning architectures used in both supervised and unsupervised learning 

settings (Samaya Madhavan & Tim Jones, 2021). This project will primarily emphasize 

supervised learning and focus on Recurrent Neural Networks (RNNs). These 

architectures within the scope of supervised learning offer distinct advantages for 

sequential data analysis, aligning with the objectives of this study. 
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Figure 1.6 Comparison of Simple Neural Network and Deep Neural Networks (Gunarathna et 

al., 2020) 

 

Figure 1.7 Deep Learning Architecture (Samaya Madhavan & Tim Jones, 2021) 
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1.2.6 Deep Learning and Intrusion Detection System (DL + IDS) 

(CANER et al., 2022) enhance the deep learning technologies to the intrusion detection 

systems. It is an automated network monitoring tool that scans network data for known 

attack patterns or abnormalities to identify malware. Network traffic is observed by 

network intrusion detection systems (IDS) to identify traffic patterns that might 

endanger systems or networks. The investigation of deep learning algorithms is 

prompted by the potential for transmission speed reduction caused by filtering traffic 

that conforms with rules. The fact that it might be challenging to detect this type of IDS 

in a system implies that an attacker is frequently unaware that NIDS are there.  

Deep learning techniques are considered since filtering out traffic that conforms 

with rules may slow down communication. The fact that this type of IDS may be 

challenging to detect in a system implies that an attacker may not even be aware that 

NIDS is observing his activities. The fact that this type of IDS analyses such high 

amounts of traffic, however, has a few drawbacks, including the possibility of 

inaccuracy and the production of too many false positives or even some false negatives. 

The purpose of this project is to research and compare deep learning RNN models 

and find all the publications and methods that previous researchers have employed. It 

will define further information regarding the DL model and dataset. The sheer volume 

of ongoing network attacks makes it essential to look at this technology right now. 

There are two kind of network intrusions: passive and aggressive. When malicious 

actors get unauthorized access to a network, they may monitor it, keep an eye on it, and 

steal sensitive information without making any modifications. Active network attacks 

involve changing, encrypting, or erasing data. Network attacks that have an effect 

include DDoS, Man-in-the-Middle attacks, and SQL Injection. 

Nevertheless, the development of AI-based solutions demands careful 

consideration, as several crucial factors come into play when constructing a generalized 

Intrusion Detection System (IDS) model. Factors such as the volume of data employed 

for training, performance metrics derived from unseen testing data to ensure avoidance 

of overfitting, the duration of the training process, the complexity of the model, various 

learning approaches, attributes inherent in the dataset, the computing environment, and 

the resources required for deployment all contribute to the nuanced landscape of 
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constructing an effective IDS model. Each of these elements necessitates thoughtful 

attention to ensure the robustness and reliability of the AI-based solution. Figure 1.8 

below shows the IDS perspective on deployment or detection methods (Ahmad et al., 

2020). 

 

Figure 1.8 Intrusion Detection System Classification Taxonomy (Ahmad et al., 2020) 
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1.3 PROBLEM STATEMENT 

Network intrusion, defined as the surreptitious and unauthorized access or manipulation 

of computer networks, represents a pervasive and grave predicament in today's digital 

milieu. From financial institutions protecting their transaction records to healthcare 

providers safeguarding the sanctity of sensitive patient data, the repercussions of a 

network breach resonate deeply. 

The Intrusion Detection System (IDS) is an influential method developed primarily 

to identify irregular activities within computer systems or specific applications. 

However, conventional IDS methods, like machine learning and pattern recognition, 

lack inherent AI characteristics. Consequently, their efficacy in recognizing intricate 

cyber-attacks within web applications, especially those that are dynamic and complex, 

remains limited compared to deep learning approaches. Deep learning methodologies, 

leveraging multilayered processing, offer enhanced accuracy, enabling more adept 

detection of evolving cyber threats within these systems. (Althubiti et al., 2018).  

The traditional methods relied upon by the IDS included encryption-decryption 

processes, protocol controls, firewalls, and anti-virus software models. Although 

effective to a certain extent in identifying specific attacks, these methods struggled with 

detecting numerous other attacks, leading to a higher frequency of false positives. 

Notably, Denial-of-Service (DoS) attacks posed a considerable challenge, 

overwhelming traditional defence mechanisms. As a result, current research has shifted 

its focus towards integrating machine learning (ML) techniques into intrusion detection 

systems. 

In contrast to traditional methods, machine learning (ML) techniques showcase 

improved identification rates while also minimizing the operational burden linked to 

handling extensive attacks. Among these techniques, Support Vector Machines (SVMs) 

excel in identifying targeted attacks within test datasets by leveraging insights gleaned 

from the training data. Additionally, SVMs demonstrate efficiency in memory 

utilization, enhancing their suitability for intrusion detection scenarios (Hnamte et al., 

2023). 
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Through analysing this technology, it also consists of benefits and challenges of 

enhancement for deep learning models in IDS. Various types of network attacks have 

been simulated and presented in numerous datasets in the current research. New 

advancements for naturally distinguishing unpredictable framework utilizations are 

being explored. Besides, the proposed development of an interruption recognition 

model as an establishment for a universally useful IDS. From that point forward, experts 

have made and carried out different strategies for computerizing the organization IDS 

strategy. They have additionally reliably looked for more exact, speedier, and versatile 

advancements for this objective. 

With the presence of the "IoT" and Large Information times, the quantity of 

connected gadgets is anticipated to move toward 26 billion by 2020. Because of this 

turn of events, the assortment and measure of network safety challenges are projected 

to develop. The issues in IDS are summed up in the figure 1.9. These hardships 

incorporate a high misleading problem rate, an unfortunate recognition rate, imbalanced 

datasets, and a sluggish response time (Aljanabi et al., 2021). 

 

Figure 1.9 IDS Challenges (Aljanabi et al., 2021) 

In recent times, researchers have advocated for expanding IDS categories by 

proposing a segmentation into five distinct sub-categories, which can fall under any of 

the previously mentioned groupings. These subclasses encompass pattern-based, rule-

based, statistics-based, state-based, and heuristic-based intrusion detection systems 

(IDS). 
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To confront these challenges, researchers have turned to deep learning architectures 

for intrusion detection. Liu et al. (2020) introduced a deep neural network (DNN) 

comprising 200 hidden layers tailored for integration into an intrusion detection system. 

They trained the model utilizing the NSL-KDD dataset, achieving commendable 

detection outcomes on the training set with an accuracy of 93%. However, as research 

advanced, experimentation with recurrent neural network (RNN) architectures revealed 

a significant enhancement in accuracy metrics when compared to DNN models. This 

notable improvement in performance underscores the necessity for a thorough 

exploration and assessment of RNN models for intrusion detection tasks, especially in 

contrast to established DNN approaches. Consequently, there exists a critical 

imperative to examine and substantiate the heightened accuracy of RNN models over 

their DNN counterparts, thereby shedding light on the potential of RNN architectures 

in propelling intrusion detection systems forward. The objectives and research 

questions guiding our study were detailed in sections 1.4 and 1.5, framing our 

investigative scope and goals.  

1.4 RESEARCH OBJECTIVES 

i. To evaluate the performance of different recurrent neural network (RNNs) 

architectures, including Simple, LSTM and GRU, for intrusion detection on the 

NSL-KDD dataset. 

ii. To investigate the impact by modifying the hypermeters, such as batch size, 

epochs, sequence length and parameter, on the effectiveness of RNN models in 

detecting network intrusions. 

iii. To compare the performance of RNN models with other deep learning models 

commonly used in intrusion detection, such as DNN (Liu et al. 2020). 

iv. To explore the effectiveness of RNN models for binary and multi-classification 

of intrusion attacks on the NSL-KDD dataset. 
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1.5 RESEARCH QUESTIONS 

i. How does the performance of Simple, LSTM and GRU models compare in 

detecting intrusion on the NSL-KDD dataset? 

ii. What is the influence of hyperparameters including batch size, epochs, sequence 

length and parameter, on the detection accuracy of RNN models for intrusion 

detection? 

iii. How does the performance of RNN models compare with other deep learning 

models, such as DNN, in terms of detection accuracy and computational 

efficiency? 

iv. Are there specific architectural modifications or training strategies that can 

enhance the performance of RNN models in accurately classifying multiple 

types of intrusion attacks simultaneously? 

Based on the research objectives and questions, this project aims to provide insights 

into the efficacy of recurrent neural network models for intrusion detection and 

contribute to the advancement of network security measures. 

1.6 SIGNIFICANCE OF RESEARCH 

An intrusion detection system (IDS) serves as a vigilant tool scrutinizing network data 

to spot malicious activities, whether through recognized attack patterns or anomalies. 

This research delves into the performance evaluation of multiple deep learning-based 

intrusion detection and classification systems. It organizes these systems based on their 

employed deep learning methodologies, showcasing their efficiency in detecting 

intrusions. Deep learning networks showcased in this study exhibit a remarkable 

capability to handle diverse data types such as network traffic, system logs, and other 

relevant sources. This versatility enables them to identify multi-layered intrusions 

across network, host, and application layers, elevating the precision of intrusion 

detection. A comprehensive analysis of the strengths and weaknesses of each DL model 

was conducted, aiming to refine and optimize existing cybersecurity frameworks. The 

goal lies in mitigating potential cybersecurity threats within organizations. 
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1.7 RESEARCH SCOPE 

The scope of this research project is delineated to ensure a focused and achievable 

exploration of RNN models (Simple-RNN, LSTM and GRU) in the context of network 

intrusion detection. The project encompasses the following key aspects: 

Experiments of Recurrent Neural Network Models for Intrusion Detection on NSL-

KDD Dataset: 

a. Deep Learning Techniques 

b. Data Sources 

c. Comparative Analysis 

d. Performance Metrics 

e. Experimentation and Evaluation 

f. Limitations 

g. Future Research Considerations 

1.8 THESIS ORGANIZATION 

This project has been structured to 5 chapters. There are Chapter 1 reports on the project 

introduction, Chapter 2 reports on the literature review conducted, Chapter 3 reports on 

the research methodology used, Chapter 4 reports on experiments and results, followed 

by conclusion and future works in Chapter 5. 

Chapter 1 lays the groundwork for this project, offering an encompassing 

introduction covering critical elements such as the research context, problem statement, 

objectives, and questions, along with highlighting the research's significance and 

delineating its scope. 

Chapter 2 is the literature review section. It begins by introducing the relevant 

knowledge of intrusion detection, including an overview, classification, and challenges 

faced in intrusion detection. Then, it discusses the concepts of deep learning, common 

network models, and popular network frameworks. Next, it introduces commonly used 

datasets in IDS. Finally, we provided the comparative analysis and conclusion of 

chapter 2. 
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Chapter 3 provides a detailed description of the proposed deep learning RNN 

models in IDS framework. We provided the features of NSL-KDD dataset, which kinds 

of attack was labelled, and explained for whole of the methods will be used in our 

chapter 4 experiments. 

Chapter 4 presents the experimental results and analysis for each of the RNN 

models, parameter, and different classification attacks to detect the network intrusion. 

The experimental environment was introduced and using the network intrusion dataset 

NSL-KDD for this experiment. 

Chapter 5 concludes the entire results of project, highlighting the future upcoming 

of the study and provided an overview of future work. 
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CHAPTER II  

 

 

LITERATURE REVIEW 

2.1 INTRODUCTION 

The realm of network security has long emphasized the significance of detecting 

intrusions to identify unauthorized access within secure internal networks. Network 

Intrusion Detection Systems (NIDS) are assembled by tapping into network equipment, 

utilizing devices like routers, switches, and Terminal Access Points (TAPs). These 

instruments serve as vigilant overseers, monitoring network breaches and violations of 

established policies. Many enterprises employ NIDS in tandem with firewalls and 

application firewalls to fortify web servers sharing the same network and system. 

Recent advancements in cyber-attacks have outsmarted conventional security measures 

by leveraging unconventional tactics such as encoding and obfuscation. To combat 

these evolving threats, we've turned to AI-powered IDS systems, capable of spotting 

and flagging variant attacks that easily evade the detection of traditional signature-based 

NIDS. (Hnamte et al., 2023). 

Current research heavily focuses on integrating machine learning (ML) methods 

into intrusion detection systems. These ML techniques show promise in boosting 

identification rates while reducing the management overhead associated with handling 

extensive attacks. Support Vector Machines (SVMs) particularly excel in recognizing 

specific attacks within test datasets by leveraging training data properties, all the while 

maintaining efficient memory usage. In the realm of IDS models, SVMs stand out for 

their use of hyperplanes and kernel functions, enabling them to effectively categorize 

different attack types within datasets. Machine learning classification algorithms, 

including logistic regression, decision tree, random forest, K-nearest neighbor (KNN), 

and support vector machine (SVM), prove to be apt choices for intrusion detection. 
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Among these, the K-nearest neighbor (KNN) design stands out as a straightforward, 

rapid, and efficient solution in addressing the complexities of intrusion detection. 

However, by using deep learning architectures, it able to increase the detection 

efficiency, reduces false positives, and eliminates the need for manual feature 

engineering. It enables intelligent identification of attack features, automating the 

detection of potential security threats (Zhang et al., 2018). 

2.2 DEEP LEARNING MODELS 

Deep learning (DL) is characterized by its ability to learn hierarchical representations 

of data through architectures featuring multiple hidden layers. The proliferation of high-

performance computing facilities has propelled the popularity of deep learning 

techniques, particularly those employing deep neural networks. This section provides 

an overview of prevalent deep learning models employed in Intrusion Detection 

Systems (IDS), including the Deep Neural Network (DNN), Convolutional Neural 

Network (CNN), Recurrent Neural Network (RNN), as well as variations like RNN-

LSTM and RNN-GRU. These diverse models offer a spectrum of capabilities in 

capturing intricate patterns and relationships within data, contributing to the 

effectiveness of deep learning in the context of intrusion detection. Figure 2.1 shows 

the relationship between AI, ML and DL (Shiri et al., 2023). 

 

Figure 2.1 Relationship between Artificial Intelligence, Machine Learning and Deep Learning 

(Shiri et al., 2023) 
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2.2.1 Deep Neural Network (DNN) 

Traditional machine learning algorithms follow a straightforward path, while deep 

neural networks work in layered complexity, each level learning more abstract features. 

Picture it like passing information from the input layer to the hidden layers, where 

complex computations happen. Deciding how many of these hidden layers and neurons 

they contain is a big challenge. Each neuron uses an activation function to process its 

output. In "deep" learning, there's a focus on multiple hidden layers. The output layer 

gives the final data, and training continues through epochs until accuracy reaches an 

acceptable level. (Vigneswaran et al., 2018). 

a. The Model Topology 

The input layer serves as the point of entry for the neural network's data initialization, 

utilizing 125 nodes that correspond to the pre-processed dataset's features. 

Situated between the input and output layers, the hidden layers undertake 

computational tasks within the model. Employing two hidden layers, the system 

consists of 50 neural nodes in the first layer and 30 neural nodes in the second layer, 

chosen based on training outcomes to optimize performance. 

Lastly, the output layer generates the results, distinguishing between normal 

activity and various attack types detected by the model. The connections of the nodes 

stated in figure 2.2 (Maithem & Al-sultany, 2021). 

 

Figure 2.2 Proposed Deep Neural Network Topology (Maithem & Al-sultany, 2021) 

Pus
at 

Sum
be

r 

FTSM



24 

 

In the figure 2.3 below is shows the deep neural network architecture for anomaly-based 

IDS (Tama & None Kyung-Hyune Rhee, 2017) and figure 2.4 illustrate deep neural 

network architecture for multi-classification (Tang et al., 2020). 

 

Figure 2.3 Deep Neural Network Architecture for Anomaly-based IDS (Tama & None Kyung-

Hyune Rhee, 2017) 

 

Figure 2.4  Deep Neural Network Architecture for Multi-Classification (Tang et al., 2020) 
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2.2.2 Convolutional Neural Network (CNN) 

Advancements in computational resources have propelled the long-established 

convolutional neural networks (CNN) into a realm of significant progress within deep 

learning. CNN's unique architecture significantly enhances data representations, 

notably in image recognition and sentence modelling, yet its application remains 

notably absent in intrusion detection because of complexity of network traffic patterns 

and imbalanced data. A typical CNN structure for visual analysis involves an input and 

output layer, along with multiple hidden layers, including convolutional, pooling, fully 

connected, and normalization layers. Within CNN, convolutional layers execute 

convolution operations on preceding inputs, forwarding the outcomes to subsequent 

layers in the network. In CNNs, a convolutional neuron handles data within its receptive 

field through a convolution operation, focusing solely on that area. To optimize memory 

and enhance performance, weights are shared across receptive fields within the same 

filter. Pooling layers, a key component, come in two primary types: max pooling, which 

selects the highest value, and average pooling, which computes the mean value within 

defined regions (Ding & Zhai, 2018). In figure 2.5 below is a CNN model IDS (Liao et 

al., 2024). 

 

Figure 2.5 CNN model Intrusion Detection System (Liao et al., 2024) 
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2.2.3 Recurrent Neural Network (RNN) 

Recurrent Neural Networks (RNNs) stand out among deep learning models for their 

inherent memory, allowing them to grasp sequential patterns effectively. Unlike 

conventional neural networks, which view inputs in isolation, RNNs factor in the 

temporal sequence of inputs, proving beneficial for tasks reliant on sequential data. 

Using a looping mechanism, RNNs iteratively process elements within a series, 

leveraging both the present input and previous computations to generate the current 

output (Farhad et.al, 2023) 

In contrast to simpler neural networks like Multilayer Perceptron’s (MLPs), Recurrent 

Neural Networks (RNNs) aren't constrained by one-way information processing. They 

possess the unique ability to cycle through various layers, allowing for the retention of 

temporary information for subsequent use. Figure 2.6 illustrates the composition of a 

standard RNN (sRNN) or Simple RNN, where 𝑁𝑁 signifies a standard neural network, 

𝑥𝑝 denotes the input, and ℎ𝑝 represents the output. RNNs are categorized as deep neural 

networks owing to their utilization of multiple layers in information processing. 

Furthermore, Figure 2.7 presents an unrolled depiction of a standard sRNN, 

highlighting the inherent multi-layered architecture within RNNs (Kasongo, 2022). 

 

Figure 2.6  Standard RNN (Kasongo, 2022) 

Pus
at 

Sum
be

r 

FTSM



27 

 

 

Figure 2.7 A unrolled standard RNN (Kasongo, 2022) 

2.2.4 Long Short-term Memory Network (LSTM) 

In 1997, Hochreiter and Schmidhuber introduced the Long Short-Term Memory 

(LSTM) network to solve the vanishing gradients problem found in standard RNNs. 

Unlike regular RNNs, LSTM replaces the unit cell with a memory cell, depicted in 

Figure 2.8. Since its inception, various versions of LSTM have emerged, but the 

architecture described here is the most used. At its core, an LSTM unit contains two 

main elements: an internal state and gates. This upgraded RNN, LSTM, effectively 

handles the challenge of retaining long-term patterns in sequences of data (Zargar, 

2021). 

 

Figure 2.8 Long Short-Term Memory (LSTM) (Zargar, 2021) 
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2.2.5 Gated Recurrent Unit (GRU) 

The GRU, introduced in 2014 by Cho et al. and Chung et al., represents a simpler 

alternative to the LSTM. Its internal structure is less complex than the LSTM, making 

it easier to train due to reduced computational demands. This simplicity is achieved 

through two primary modifications: first, combining the input and forget gates into a 

singular update gate, and second, merging the internal/cell state with the hidden state. 

Within the architecture of a GRU unit, three fundamental elements play a pivotal role: 

the update gate, the reset gate, and the existing memory content. These gates endow the 

GRU with the capability to selectively update and harness information from preceding 

time steps. This unique ability equips the GRU to effectively capture and maintain long-

term dependencies within sequences, contributing to its proficiency in handling intricate 

data relationships over time (Farhad et.al, 2023). Figure 2.9 present the gated recurrent 

unit implementation (Kilinc & Yurtsever, 2022). 

 

Figure 2.9 Gated Recurrent Unit (GRU) Implementation (Kilinc & Yurtsever, 2022) 
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Figure 2.10 below shows the RNN, LSTM and GRU models for intrusion detection 

system (Toharudin et al., 2021), and table 2.1 is the short comparison for RNN models. 

 

Figure 2.10 RNN, LSTM and GRU models for Intrusion Detection System (Toharudin et al., 

2021) 

Table 2.1 Comparison of RNN models 

Parameters RNNs LSTMs GRUs 

Structure Simple More complex Simpler than LSTM 

Training Can be difficult Can be more 

difficult 

Easier than LSTM 

Performance Good for simple 

tasks 

Good for 

complex tasks 

Can be intermediate between 

simple and complex tasks 

Hidden state Single Multiple 

(memory cell) 

Single 

Gates None Input, output, 

forget 

Update, reset 

Ability to retain long-

term dependencies 

Limited Strong Intermediate between RNNs 

and LSTMs 

In summary, deep learning models for DNN, CNN and RNN are the most used for the 

IDS experiments. We would like to choose RNN models (Simple RNN, LSTM, and 

GRU) for further investigation and comparison in intrusion detection systems (IDS) due 

to the inherent capability to effectively analyze sequential data, such as network traffic. 

Besides that, LSTM and GRU variants address the limitations of traditional RNNs by 

enabling the capture of long-term dependencies in the data while selectively retaining 

relevant information. The models flexibility in handling variable-length sequences and 

efficient feature learning make them promising candidates for identifying subtle 

intrusion patterns and anomalies in network traffic data, thus enhancing the 

effectiveness of cybersecurity measures.   
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2.3 NETWORK INTRUSION DETECTION DATASET 

2.3.1 NSL-KDD 

The NSL-KDD dataset, abbreviated from "Network-based System for Learning," was 

introduced as an enhanced version to bolster intrusion detection research within 

cybersecurity. This dataset serves as a prevalent resource in the field, addressing 

limitations present in the original KDD Cup 1999 dataset, a common benchmark for 

intrusion detection system studies. Created after eliminating redundant and duplicate 

records from the KDD Cup, it comprises a refined selection of essential records for 

experimentation. The NSL-KDD dataset comprises a total of 37 distinct attacks, 

distributed with 27 attacks in the testing dataset and 23 in the training dataset. It retains 

the same number of features as the original KDD Cup, boasting 41 features distributed 

among 5 attack classes. The array of attacks within the dataset includes a standard class 

representing normal behaviour alongside four distinct attack types categorized as Probe, 

Denial of Service (DoS), User to Root (U2R), and Remote to Local (R2L). This diverse 

categorization enables a broad spectrum of intrusion detection experiments across 

varied attack scenarios. Table 2.2 and 2.3 below present the comparison of the 

KDDCup99 and NSL-KDD dataset (Bala, 2019). 

Table 2.2 Comparison of KDDCup99 and NSL-KDD Dataset 

Attack Category Full Dataset 10% Dataset 

KDDCup 99 KDDCup 99 NSL-KDD 

Train Train Test Train Test 

Normal 972,780 97,278 60,593 67,343 9,711 

DoS 3,883,370 391,458 229,853 45,927 7,460 

Probe 41,102 4,107 4,166 11,656 2,421 

R2L 1,126 1,126 16,189 995 2,885 

U2R 52 52 228 52 67 

Total 4,898,430 494,021 311,029 125,973 22,544 

Table 2.3 Count of Normal and Malicious Data in NSL-KDD 

Dataset Normal Malicious Total 

KDD Train+ 67343 58630 125973 

KDD Test+ 9711 12833 22544 
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2.3.2 UNSW-NB15 

The introduction of the UNSW-NB15 dataset in 2015 within the Cyber Security Lab at 

the Australian Centre (ACCS). It was another version of dataset compare with previous 

datasets like KDDCup 99 and NSL-KDD. Crafted with a specific focus on refining 

Network Intrusion Detection System (NIDS) models, it covers a wide range of nine 

distinct attack types (Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic, 

Reconnaissance, Shellcode, and Worms). With an extensive array of 49 distinct 

features, this dataset provides a comprehensive collection of both regular and attack 

activities, meticulously categorized across a database of over two million records. In its 

original composition, it hosts 2,540,044 records, enabling the classification of normal 

network traffic alongside various types of network attacks (Mijalkovic & Spognardi, 

2022). The dataset underwent partitioning into distinct training and testing sets, 

culminating in 175,341 records allocated for training purposes and 82,332 records 

reserved for testing. This strategic division aimed to ensure a balanced representation 

of diverse attack types and normal network traffic across both sets. Such a balanced 

distribution bolstered the model's ability to learn effectively and generalize its 

understanding across a spectrum of data scenarios. In table 2.4 presented the train and 

test connection records of partial dataset of UNSW-NB15 (Yee Mon Thant et al., 2023). 

Table 2.4 Training and Testing Connection Records of Partial Dataset of UNSW-NB15 

Attack Train Test Total Description 

Normal 56,000 37,000 93,000 Normal connection 

Fuzzers 18,184 6,062 24,246 Instances of attacks encompass activities 

such as spam-related intrusions, breaches 

involving HTML files, and incursions 

through port scans. 

Analysis 2,000 677 2677 The analysis encompasses the 

investigation of specific network 

information by conducting scans, 

examining aspects such as port scanning, 

potential HTML file penetrations, and 

the identification of spam-related 

activities. 

Backdoors 1,746 583 2329 A backdoor refers to a type of malware 

designed to illicitly gain unauthorized 

access to a computer system or network. 

     

    

… to be continued 
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… continuation     

     

DoS 12,264 4,089 16,353 The primary goal of an intruder is to 

disrupt network resources, rendering 

them inaccessible to authorized users. 

Exploits 33,393 11,132 44,525 An attacker identifies weaknesses in an 

operating system or data and uses that 

information to exploit vulnerabilities. 

Generic 40,000 18,871 58,871 Attacks on block ciphers involve hashing 

numerous messages to prevent the same 

hash from appearing again, aiming for 

collision resistance. 

Reconnaissance 10,491 3,496 13,987 Attackers exploit system weaknesses by 

scanning traffic or sniffing packets to 

identify vulnerabilities. 

Shellcode 1,133 378 1511 The term "payload" refers to a small 

segment of a program, often utilized in 

exploiting vulnerabilities within software 

systems. 

Worms 130 44 174 Worms have the capability to self-

replicate and propagate through 

computer networks, distributing 

themselves to other systems within the 

network infrastructure. 

2.3.3 CICIDS2017 

The Canadian Institute for Cyber-security recognized the limitations of older datasets, 

prompting them to develop newer ones like CICIDS2017. These older datasets often 

lack diversity in traffic, fail to encompass comprehensive features and metadata, and 

suffer from insufficient volumes. They might overlook the variety of cyber-attacks or 

anonymize traffic, disregarding crucial data payloads. CICIDS2017 come out as the 

most comprehensive and current dataset, addressing these shortcomings by offering a 

more complete representation of cyber threats. (Sharafaldin et al., 2018). The 

CICIDS2017 dataset satisfies all the essential criteria required to construct a precise 

benchmark dataset, encompassing updated attack methodologies like DoS, DDoS, 

Brute Force, XSS, SQL Injection, Infiltration, Portscan, and Botnet (Azzaoui et al., 

2021). Over a span of five days, CICIDS2017 compiled data within a fully configured 

network environment, incorporating diverse devices like Modems, Firewalls, and 

Routers. To replicate authentic traffic, researchers meticulously analyzed human 

interaction behaviors, crafting genuine benign background traffic. The dataset 

encapsulates an array of cyber threats, including Brute Force FTP, Brute Force SSH, 
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Heartbleed, Botnet, DoS, DDoS, Web Attacks, and Infiltration Attacks. These attacks 

are defined by an extensive set of 85 numeric and nominal features, providing a detailed 

characterization of each type of threat (Azzaoui et al., 2021). The detailed information 

of CICIDS 2017 dataset is reported in table 2.5 below (Vinayakumar et al., 2019). 

Table 2.5 CICIDS 207 Train and Test Dataset 

Attack Train Test Total Description 

Normal 60,000 20,000 80,000 Normal connection records 

SSH-Patator 5,000 897 5,897 Secure shell - Representation of brute force attack 

FTP-Patator 7,000 938 7,938 File transfer protocol - Representation of brute 

force attack 

DoS 6,000 2,000 8,000 The intruder's objective is to disrupt network 

resources, rendering them inaccessible to 

authorized users. 

Web 2,000 180 2,180 Related to web attacks 

Bot 1,500 466 1,966 Bot owners exert control over hosts, manipulating 

them to execute diverse tasks like data theft, 

dissemination of spam, and various other 

activities. 

DDoS 6,000 2,000 8,000 A Distributed Denial of Service (DDoS) attack is 

an intentional effort to disrupt services by 

overwhelming them with traffic from various 

origins. This disruptive tactic relies on harnessing 

a botnet, a network of compromised devices, to 

flood a target with an excessive volume of 

requests or data, rendering the services 

inaccessible to legitimate users. 

Port Scan 6,000 2,000 8,000 A port scan helps identify open ports associated 

with specific services, allowing attackers to gather 

information about the sender and receiver's 

listening details. 
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2.3.4 CSE-CIC-IDS2018 

The CSE-CIC-IDS2018 dataset, a collaboration between the Canadian government's 

CSE, the Canadian Institute for Cybersecurity (CIC), and Amazon Web Services 

(AWS), stands out as the most extensive and latest public intrusion detection dataset 

available. Spanning ten days, it captures genuine network attacks within its network 

topology, cataloging both benign and attack traffic in CSV files. With a collective size 

of 6.41 GB spread across 10 files, it contains a whopping 16,233,002 datasets. 

Interestingly, this vast dataset lacked predefined training and testing divisions due to its 

size and redundancies. Researchers encountered variations in data processing 

techniques and overall data quantities. For instance, some studies opted for 40,000 

benign data samples out of the total 13,484,708, along with 20,000 attack data samples, 

utilizing nine out of the ten available files for their experiments. The details of attack 

types of CSE-CIC-IDS2018 reported in table 2.6 (Wang et al., 2023). 

Table 2.6 List of Attack Types of CSE-CIC-IDS2018 

Attack Training-

Validation Set 

Testing Set Attack Name 

Benign 7,003,032 1,824,935 Normal 

Bruteforce 

 

75,434 18,619 FTP-Bruteforce and SSH-Bruteforce 

 

DoS 

 

156,525 39,443 DoS-GoldenEye, DoS-Slowloris, DoS-

SlowHTTPTest, and DoS-Hulk 

 

Web Attack 

 

522 136 Brute Force-Web, Brute Force-XSS, and 

SQL Injection 

 

Infiltration 

 

60,382 19,379 Infiltration 

Botnet 

 

114,647 28,786 Bot 

DDoS 618,384 154,529 DDoS attacks-LOIC-HTTP, DDoS-LOIC-

UDP, and DDOS-HOIC 
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2.3.5 Commonly Used Dataset in IDS Based on Various Deep Learning 

In this section, we analyzed most of the IDS used which of the datasets in recent years. 

We provided the details and references for some of the deep learning models selected 

which of the subsequent datasets in Table 2.7. 

Table 2.7 Commonly used Models and Datasets in Intrusion Detection System 

 

Model 

Datasets 

KDD Cup99 NSL-KDD UNSW-

NB15 

CICIDS2017 CSE-

CIC-

IDS2018 

Others 

DNN (Vigneswaran 

et al., 2018) 

(Maithem & 

Al-sultany, 

2021) 

(Hsieh & Su, 

2021) 

(Almejarb et 

al., 2023) 

(Mijalkovic & 

Spognardi, 

2022) 

(Ashiku & 

Dagli, 2021) 

(Mijalkovic 

& 

Spognardi, 

2022) 

   

CNN (Vinayakumar 

et al., 2017) 

(Vinayakumar 

et al., 2017) 

(Ding & Zhai, 

2018) 

(Lokesh 

Karanam et 

al., 2020) 

  (Hagar & 

Gawali, 

2022) 

(Vanlalruata 

Hnamte & 

Hussain, 

2023) 

RNN 

(SimpleRNN, 

LSTM, 

GRU) 

 (Lokesh 

Karanam et 

al., 2020) 

(Muhuri et al., 

2020) 

(Kasongo, 

2022) 

(Ibrahim & 

Elhafiz, 2023) 

(Zhang et al., 

2023) 

(Kasongo, 

2022) 

(Yee Mon 

Thant et al., 

2023) 

 

 (Hagar & 

Gawali, 

2022) 

(Althubiti et 

al., 2018) 

LSTM-AE    (Hnamte et 

al., 2023) 

(Hnamte 

et al., 

2023) 

 

ML (Behrooz 

Sezari et al., 

2018) 

(Belgrana et 

al., 2021) 
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In the summarizing table 2.7 above, we can see that the most popular datasets used in 

IDS are KDD Cup 99, NSL-KDD and UNSW-NB15. NSL-KDD still is the most widely 

applied and researched network intrusion detection dataset. There are some reasons why 

NSL-KDD is the best option for IDS. The first reason is because NSL-KDD dataset is 

an upgraded version of KDD Cup 99 dataset, it contains approximately 130,000 

network connection records, many network traffic samples, and different types of 

attacks. The second reason is compared with other IDS datasets, NSL-KDD is 

considered not too large and enough time for training. The last reason is because NSL-

KDD dataset combines with the real network traffic data, which can help to simulate 

intrusions in realistic network environments. 
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2.4 CURRENT RESEARCH IN INTRUSION DETECTION SYSTEM 

a. Big data, IoT and AI for a smarter future (Ashiku & Dagli, 2021) 

Due to inherent vulnerabilities, ensuring secure communication exchanges necessitates 

robust cybersecurity measures. Deep learning architectures are now pivotal in crafting 

adaptable and resilient network intrusion detection systems (IDS) capable of identifying 

and categorizing diverse network threats. Leveraging the UNSW-NB15 dataset, a 

sophisticated NIDS model was employed, simulating genuine network communication 

behaviours and attack scenarios. Through a deep learning classification architecture and 

a semi-dynamic hyperparameter tuning technique, significant enhancements were 

observed in comparison to other deep learning-based network IDS solutions. Notably, 

the proposed approach exhibited substantial improvements in multiclass models, 

achieving an impressive overall accuracy of 95.4% for pre-partitioned multiclass 

classification and 95.6% for user-defined multiclass classification. Figure 2.11 shows 

the detection rates for the types of each attack. 

 

Figure 2.11 Detection rates for the types of attacks (Ashiku & Dagli, 2021) 
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b. Deep Learning Approach for IDS in Medical Things (Chaganti et al., 2022) 

Utilizing Internet of Medical Things (IoMT) technology has proven instrumental in 

extending doctors' reach to more patients and enhancing real-time patient monitoring 

and diagnostics, potentially saving lives. Nonetheless, the vulnerability of IoMT 

devices to cyber-attacks poses significant concerns regarding security and privacy. 

Given their constrained computation and memory capabilities, implementing robust 

security measures directly on IoMT devices remains challenging. To address this, a 

novel approach employing a deep neural network (PSO-DNN) has been proposed for 

an efficient and precise intrusion detection system within the IoMT framework. This 

PSO-DNN methodology showcases a remarkable 96% accuracy in detecting network 

intrusions by integrating network traffic and patient sensing datasets. The study 

introduces a strategic feature selection technique using PSO-DNN, augmenting the 

performance of the intrusion detection system in IoMT and proposing a DNN-based 

deep learning model for improved security. 

c. Network Threat Detection Using Deep Learning in SDN-Based Platforms 

(Ahmed et al., 2022) 

SDN (software-defined networking) has ushered in a revolution in network innovation 

by allowing network control from a single point and providing an overview of 

organisation security. Network interruption detection frameworks (NIDS) detect and 

prevent network outages while also ensuring the organization's trustworthiness, 

accessibility, and privacy. Despite significant progress in NIDS, there is still need for 

improvement in terms of minimizing fake issues and enhancing risk location accuracy. 

This research was used in SDN-based NIDS to address network security issues and 

examine NID frameworks based on SDN, for example, lightweight DDoS flooding 

attack, anomaly location, DDoS assault identification, and interruption recognition. In 

the exploration, four management techniques were examined. In figure 2.12 present the 

DL approaches for network intrusion detection. 
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Figure 2.12 DL Approaches for Network Intrusion Detection (Ahmed et al., 2022) 

SDN-based NID frameworks were proposed, and the DNN DL calculation was 

utilized. IDS was created to classify digital assaults utilizing DNN calculations. When 

contrasted with ML strategies, it accomplishes identification precision of up to 96.3%. 

The FFDNN DL calculation was utilized to recommend an interruption recognition 

framework. The dataset was NSL-KDD, and FFDNN was used for both preparation and 

testing. The trial results propose that discovery exactness can reach 99.69%. One more 

strategy used to do LTSM is RNN, and the dataset used was KDD Cup1999. The LSTM 

is prepared, and the blunder of the LSTM is used as a sign to distinguish irregularities. 

In this experiment, a set comprising one non-attack and four distinct attacks was 

utilized for evaluation purposes, achieving a robust detection rate of 98.8%. The study 

proposed the implementation of an LSTM-based RNN within a multichannel IDS 

system, leveraging the NSL-KDD dataset. The experimental assessment showcased the 

LSTM-RNN's performance, achieving an impressive 99.23% accuracy alongside a false 

alarm rate of 9.86%. Additionally, this paper introduced a network-based IDS approach 

utilizing convolutional autoencoders on the CTU-UNB and Contagio-CTU-UNB 
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datasets. A neural network (NN) model constructed using Theano showed promising 

results, boasting a high accuracy rate of 99.5%. 

d. Towards Data-Driven Network Intrusion Detection Systems (Maabreh et al., 

2022) 

On one million random network intrusions from the CSE-CIC-IDS2018 large data set, 

this study investigates four feature selection procedures, seven standard machine 

learning techniques, and the deep learning algorithm. In the massive CSE-CIC-

IDS2018 data collection, this covers all potential types of network intrusions, which 

have been divided between 30% unknown testing and 70% feature selection and model 

training. There is one binary label, "Benign" or "Attack," and 68 traffic characteristics 

in the dataset. 

e. An adaptive method and a new dataset UKM-IDS20 (Al-Daweri et al., 2021) 

The UKM-IDS20 emerges as a novel dataset recommended in this research. Compiled 

from genuine network traffic data, it incorporates an array of 46 features covering 

distinct attack types including ARP poisoning, DoS, scans, and exploits. Employing 

rough-set theory and a dynamic artificial neural network, this dataset underwent 

rigorous examination and comparison against the KDD99 and UNSW-NB15 datasets. 

The evaluation yielded an accuracy detection rate of 94.66% and a false alarm rate of 

07.57% for the UKM-IDS20. 

f. Reducing the False Negative Rate in Deep Learning Based on NIDS 

(Mijalkovic & Spognardi, 2022) 

Network intrusion detection systems (NIDS) are critical components of system security 

because they continually monitor the network and notify users to any unusual behaviour 

or incident. The purpose of this basic model was to outperform, if not outperform, the 

models demonstrated in cutting-edge research. This research generated various models, 

provided a beneficial refining method, and enhanced predictability for minority classes. 

The collected data demonstrated that by utilising the appropriate settings, it is feasible 

to achieve a satisfying trade-off between FNR, accuracy, and minority class detection. 
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g. Performance analysis and feature selection for NIDS Deep Learning (Caner 

et al., 2022) 

The researcher's focus on exploring the intrusion detection and classification 

capabilities of diverse deep learning-based systems. To achieve this goal, 24 deep neural 

networks, each characterized by four unique architectures, underwent training and 

evaluation using the CICIDS2017 dataset. Ablation research methodology was 

employed to assess the utility of features, subsequently aiding in the identification of 

the most effective model for feature selection. The attained accuracy reached 97.58% 

when utilizing only nine raw features, accompanied by a notable reduction in test time 

per sample to 40.56 seconds. This underscores the efficiency and precision achieved 

through the streamlined feature selection process. 

h. Intrusion Detection Method Based on Deep Learning (Tian et al., 2022) 

This research finalized an in-depth examination of network traffic within a big data 

storage environment, focusing on performance connected to Hadoop storage. The initial 

phase involved a comprehensive review of big data security, incorporating diverse 

requirements for intrusion detection. Subsequently, the study sought to introduce a 

decision tree analysis model, employing a feature selection method and network feature 

detection. This detection mechanism was implemented through a deep learning model 

constructed on the TensorFlow platform. The overarching objective was to not only 

enhance security measures but also to identify and characterize the intricate network 

patterns within the context of big data storage and connectivity. 

i. Apache Spark and Deep Learning Models for High-Performance NIDS 

(Hagar & Gawali, 2022) 

To identify network threats, this study used three models: Apache Spark, CNN, and 

LSTM. The recommended models used the random forest strategy to reduce the size of 

the feature reduction from 84 to 19. Apache Spark received an F1-score of one for ten 

classes, 100% accuracy for the remaining classes, and F1-scores of 0.99, 0.98, 0.97, and 

0.98 for the other classes. When DL models and other related studies are compared, 

Apache Spark is the quickest model, needing just 7.56 minutes to train. 
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j. Deep Learning-Based Intrusion Detection Systems (Lansky et al., 2021) 

In this paper, intrusion detection technologies that have helped deep neural networks 

deal with invasions and destructive acts are thoroughly reviewed and classified. To do 

this, it first categorises deep IDS systems according to the deep learning techniques they 

use. After that, it analyses how each scheme aims to use deep learning techniques to 

recognise various types of intrusions. 

k. NIDS optimized with rule-based hybrid feature selection (Ayo et al., 2020) 

This research presents an innovative NIDS (Network Intrusion Detection System) that 

leverages deep learning models while integrating a hybrid rule-based feature selection 

methodology. Its framework encompasses three critical stages: detection, rule 

assessment, and hybrid feature selection. Interestingly, the study's findings unveiled an 

unexpected revelation: the quantity of selected features had no bearing on the detection 

accuracy of the feature selection techniques. However, a notable correlation emerged 

between the base classifier's performance and the number of chosen features. 

Impressively, with training and testing times at 1.2% and 98.8%, and execution 

durations of 7.17s and 3.11s respectively, the proposed strategy displayed a 

performance comparison featuring reduced false alarm rates and elevated accuracy rates 

in contrast to existing techniques in the NIDS domain. These outcomes highlight the 

superior efficacy of the proposed approach over established methodologies within 

NIDS. 

l. Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) to 

Classify Network Attacks (Muhuri et al., 2020) 

A new strategy was introduced to elevate the classification of the NSL-KDD dataset 

through an inventive intrusion detection method. This approach merged a genetic 

algorithm (GA) for precise feature selection with the incorporation of a LSTM 

component within RNN. This fusion of GA-based feature selection and the LSTM-RNN 

architecture significantly amplified the overall effectiveness of the intrusion detection 

system (IDS). 

The evaluation of the IDS necessitated a thorough analysis, focusing on crucial 

metrics such as accuracy, recall, precision, f-score, and the confusion matrix. This in-

depth assessment extensively relied on the NSL-KDD dataset for testing purposes. 
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Leveraging LSTM-RNN models, the dataset underwent a segmentation process, 

creating distinct binary classifications (normal and malicious) and multi-class 

categorizations involving Normal, DoS, Probe, U2R, and R2L categories. This 

deliberate division facilitated a comprehensive examination of the LSTM-RNN model's 

performance across diverse intrusion detection scenarios.  

What emerged from this exploration were clear improvements in the LSTM-RNN's 

classification accuracy. These gains were most pronounced when the GA was employed 

to refine feature selection, showing its impact in enhancing classification accuracy for 

both binary and multi-class classifications. 

m. Intrusion Detection System for NSL-KDD Dataset Using Convolutional 

Neural Networks (Ding & Zhai, 2018) 

This investigation centred around the training of an Intrusion Detection System (IDS) 

model, utilizing Convolutional Neural Networks (CNN) specifically tailored for the 

expansive NSL-KDD dataset. The primary objective aimed to explore the intricacies of 

multi-class classification scenarios, conducting a direct comparison between the CNN-

based model and traditional methods such as Random Forest (RF) and Support Vector 

Machine (SVM). Additionally, the study delved into state-of-the-art deep learning 

techniques like the Deep Belief Network (DBN) and Long Short-Term Memory 

(LSTM). The overarching aim was to execute a thorough analysis, shedding light on 

the unique strengths and limitations inherent in various approaches within the dynamic 

field of intrusion detection. 

The experiment was designed to assess how well the IDS model performed in multi-

class classification when stacked against various other methods. Interestingly, the 

results highlighted that the IDS model outperformed both the traditional machine 

learning methods and the cutting-edge deep learning methods in this multi-class 

classification scenario. 

During the evaluation of the IDS model utilizing CNN, the attained overall testing 

accuracy for the five-class classification was 80.1321% in one assessment and 

62.3206% in another. These results emphasized the robust capability of the CNN-based 

IDS model in adeptly classifying intrusions across multiple classes, highlighting its 

supremacy over both traditional and innovative methods within this context. 
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2.5 COMPARATIVE ANALYSIS 

In this section, we compared several current research of deep learning models, datasets, 

and accuracy in Intrusion Detection System.  

Table 2.8 Comparison of Deep Learning Models in IDS 

Citation Model Dataset Classificat

ion 

Accuracy 

(Train 

Dataset) 

Accuracy 

(Test 

Dataset) 

Precision Recall F1-

Score 

(Zhang et 

al., 2023) 

DNN 

LSTM 

NSL-KDD Binary-

Class 

98.78% 

98.96% 

- 

- 

87.1% 

88.54% 

89.29% 

92.86% 

92.39% 

90.34% 

(Behrooz 

Sezari et 

al., 2018) 

Deep-

FFNN 

KDD 

Cup99 

Multi-

Class 

99.86% - - - - 

(Althubit

i et al., 

2018) 

LSTM CSIC 2010 

HTTP 

Binary-

Class 

99.97% - 99.5% 99.5% - 

(Hsieh & 

Su, 

2021) 

DNN NSL-KDD Multi-

Class 

- 79% - - - 

(Lokesh 

Karanam 

et al., 

2020) 

CNN-

LSTM 

NSL-KDD Multi-

Class 

99.6% 89.23% 86.86% - - 

(Fu et al., 

2018) 

LSTM NSL-KDD Multi-

Class 

97.52% - - - - 

(Ferrag 

et al., 

2020) 

DNN 

RNN 

CNN 

CSE-CIC-

IDS2018 

Multi-

Class 

97.28% 

97.31% 

97.38% 

- - - - 

(Laghriss

i et al., 

2021) 

LSTM KDD 

Cup99 

Binary-

Class 

98.88% - - - - 

(Jiang et 

al., 2020) 

CNN + 

BiLST

M 

NSL-KDD 

UNSW-

NB15 

Multi-

Class 

- 83.58% 

77.16% 

- - - 

(Ding & 

Zhai, 

2018) 

CNN 

LSTM 

NSL-KDD Multi-

Class 

- 80.13% 

73.18% 

- - - 

In table 2.8 above, we can see the comparison between each of the researchers’ 

experiment results. We can conclude that most of the Train Dataset used by the 

researchers and train the accuracy are above 97% and above. But for the Testing 

Dataset, all the accuracy is below 90% because the testing dataset combined with the 

real network traffic data. 
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2.6 CONCLUSION 

Deep learning technology spans a broad spectrum of algorithmic models and holds 

immense potential for research. In this study, we've focused on analyzing the 

application of deep learning in intrusion detection research over the past five years. The 

Recurrent Neural Networks (RNNs) stand out due to their proficiency such as Simple-

RNN, LSTM and GRU in processing sequential data and capturing temporal 

dependencies, a crucial capability given the serialized nature of intrusion detection data, 

such as network traffic or system logs. The adaptability of the RNN model to intrusion 

detection tasks is noteworthy, and its effectiveness is further emphasized when applied 

to widely used datasets like NSL-KDD. This dataset's prevalence attests to its 

reliability, endorsing the suitability of the RNN model for enhancing intrusion 

detection. In conclusion, the synergy between RNN models and datasets like NSL-KDD 

presents a promising avenue for advancing our capabilities in detecting and addressing 

security threats within serialized intrusion detection data. For our experiment results, 

we trained data similar with other researchers experiment results but for the algorithm 

& parameter we used different types of units to compare the different testing results 

using Test Dataset. 

 

 Pus
at 

Sum
be

r 

FTSM



 

  

CHAPTER III  

 

 

METHODOLOGY 

3.1 INTRODUCTION 

The research methodology describes the methods and data analysis used in the study. 

The relentless growth of the digital landscape, coupled with the expanding reliance on 

networked systems, has brought network security to the forefront of technological 

priorities. As organizations and individuals continue to entrust sensitive data to digital 

environments, safeguarding against network intrusions has become an essential task. 

To address this challenge, this research endeavours to deploy advanced techniques of 

deep learning to detect and mitigate network intrusion events. 

In this project, the quantitative methodology is strategic and founded on the 

necessity for a rigorous and data-centric examination of network intrusions. 

Quantitative methods offer the means to establish a structured and evidence-based 

foundation for this study, promising robust and replicable results. Deep learning, a 

subset of machine learning, has emerged as a powerful technique for addressing 

complex, data-intensive tasks. Its ability to autonomously learn and adapt from data 

makes it particularly well-suited for the dynamic nature of network intrusion patterns. 

By using quantitative methods, it can allows not only detect network intrusions, but also 

to optimize the model’s performance through rigorous experimentation. 

This chapter is structured to provide a comprehensive account of the research 

methodology used in our endeavour the performance comparison of deep learning with 

intrusion detection systems using Recurrent Neural Networks based Framework. It 

encompasses a range of critical elements, from data collection and preprocessing to 

model selection, training, and evaluation. 
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3.2 RESEARCH DESIGN 

In this study, we adopt a quantitative research approach. Quantitative research allows 

for the systematic collection and analysis of numerical data to draw statistical inferences 

and generalize. This approach is particularly well-suited for examining the effectiveness 

of deep learning models in network intrusion detection. 

This research assumes the form of an experimental study. In this experimental 

design, we will manipulate independent variables, such as data collection, data 

preprocessing techniques, model architectures and hyperparameters. While observing 

their impact on dependent variables, such as detection accuracy, false positives, and 

false negatives. And the last phases will be evaluation and results. This controlled 

experimental approach facilitates a meticulous examination of these critical variables. 

Figure 3.1 discuss the experiment flows (Yee Mon Thant et al., 2023). 

 

Figure 3.1 Overview of Experiment Flows (Yee Mon Thant et al., 2023) 
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3.3 DATA COLLECTION 

In this project, we've opted to utilize the NSL-KDD dataset as our primary source of 

network traffic data. Renowned as a benchmark dataset for network intrusion detection, 

the NSL-KDD dataset was specifically crafted to overcome the limitations of the 

original KDD Cup 1999 dataset. It provides a more authentic portrayal of network 

traffic and intrusion scenarios, offering researchers a comprehensive view. This 

substantial dataset, containing around 4.5 million records, is commonly employed in 

intrusion detection experiments. In table 3.1 below describe the 41 features are 

categorized into three primary groups: TCP connection features, content features, and 

traffic features, enabling a multifaceted analysis of network behavior and potential 

threats (Maithem & Al-sultany, 2021). 

Table 3.1 Features of NSL-KDD Dataset 

No Features Name Type Description 

TCP Connection Features 

1 Duration Numeric Length (number of seconds) of the connection 

2 Protocol Type Non-numeric Protocol type tcp, udp and icmp 

3 Service Non-numeric Network service on the destination, e.g., http, 

telnet, etc. 

4 Source Bytes Numeric The number of data bytes transferred from source 

to destination 

5 Destination Bytes Numeric The number of data bytes transferred from 

destination to source 

6 Flag Non-numeric Normal or error status of the connection 

7 Land Numeric 1 if connection is from/to the same host/port; 0 

otherwise 

8 Wrong Fragment Numeric Number of “wrong” fragments 

9 Urgent Numeric Number of urgent packets 

Content Features 

10 Hot Numeric number of “hot” indicators 

11 Number Failed Logins Numeric number of failed login attempts 

12 Logged In Numeric 1 if successfully logged in; 0 otherwise 

13 Number Compromised Numeric number of “compromised” conditions 

14 Root Shell Numeric 1 if root shell is obtained; 0 otherwise 

… to be continued 
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… continuation 

15 Su Attempted Numeric 1 if “su root” command attempted; 0 otherwise 

16 Number Root Numeric number of “root” accesses 

17 Number File Creations Numeric number of file creation operations 

18 Number Shells Numeric number of shell prompts 

19 Number Access Files Numeric number of operations on access controls files 

20 Number Outbound 

Cmds 

Numeric number of outbound commands in an ftp session 

21 Is Host Login Numeric 1 if the login belongs to the “hot” list; 0 otherwise 

22 Is Guest Login Numeric 1 if the login is a “guest” login; 0 otherwise 

Traffic Features 

23 Count Numeric number of connections to the same host as the 

current connection in the past two seconds 

24 Destination Host Count Numeric count of the connections having same dst host 

25 Serror Rate Numeric % of connections that have “SYN” errors 

26 Rerror Rate Numeric % of connections that have “REJ” errors 

27 Same Service Rate Numeric % of connections to the same service 

28 Different Service Rate Numeric % of connections to different services 

29 Service Count Numeric The number of connections to the same service as 

the current connection in the previous two 

seconds 

30 Service Serror Rate Numeric % of connections that have “SYN” errors 

31 Service Rerror Rate Numeric % of connections that have “REJ” errors 

32 Service Different Host 

Rate 

Numeric % of connections to different hosts 

33 Destination Host 

Service Count 

Numeric count of connections has same dst host and using 

same service 

34 Destination Host Same 

Service Rate 

Numeric % of connections have same dst port and using 

same service 

35 Destination Host 

Different Service Rate 

Numeric % of different services and current host 

36 Destination Host Same 

Source Port Rate 

Numeric % of connection to current host having same src 

port 

37 Destination Host 

Service Different Host 

Rate 

Numeric % of connections to same service coming from 

diff.host 

38 Destination Host Serror 

Rate 

Numeric % of connection to current host that have an S0 

error 

39 Destination Host 

Service Serror Rate 

Numeric % of connection to current host and specified 

service that have an S0 error 

40 Destination Host 

Rerror Rate 

Numeric % of connection to current host that have an RST 

error 

41 Destination Host 

Service Rerror Rate 

Numeric % of connection to the current host and specified 

service that have an RST error 
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3.3.1 Multiclassification Attacks 

There are 22 kinds of attacks in this dataset, which can be grouped into 4 major 

categories: 

1. A Denial-of-Service Attack (DoS) happens when an attacker blocks legitimate 

users' access to a system by overwhelming system resources, such as computing 

power or memory to the extent that it becomes incapable of managing genuine 

requests. For instance, a SYN flood is a typical example where an excess of 

SYN requests floods the system, disrupting its ability to attend to valid user 

demands. 

2. A user-to-root attack (U2R) occurs when an attacker, having local access as a 

regular user on the system (possibly acquired through methods like dictionary 

attacks, password sniffing, or social engineering) exploits system vulnerabilities 

to escalate their privileges to gain root access. This elevated access grants them 

the capabilities of a system supervisor. An example of this type of attack 

includes different forms of "buffer overflow" attacks targeting vulnerabilities 

within the system. 

3. In a Remote to Local Attack (R2L), the attacker initiates the attack by 

transmitting packets from a remote machine across a network, attempting to gain 

unauthorized access without legitimate credentials. This unauthorized access 

might be achieved through methods like password guessing. The attacker seeks 

to exploit vulnerabilities from a distance, attempting to breach the targeted 

system's defenses without having any prior authorization. 

4. Probing, also known as a Probe attack, involves an attacker attempting to gather 

information about a network to identify potential vulnerabilities. Through these 

investigative actions, the attacker aims to map the network's topology and 

uncover the array of services active within it. For instance, techniques like port 

scanning are utilized to scrutinize the network, allowing the attacker to pinpoint 

possible weaknesses and understand the types of services operating on the 

network. 

The NSL-KDD dataset comprises two main components: KDDTrain+ serves as a 

comprehensive training dataset, available in both CSV and txt formats, containing 

attack-type labels and difficulty levels. Similarly, KDDTest+ functions as a thorough 
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testing dataset, also provided in CSV and txt formats, and includes attack-type labels 

alongside difficulty levels. These datasets collectively offer a detailed repository for 

training and evaluating intrusion detection models, enabling researchers to work with 

labeled data for comprehensive analysis and testing (Muhuri et al., 2020). Table 3.2 and 

3.3 characterize the NSL-KDD dataset. 

Table 3.2 Categories of Attacks 

Major Categories Subcategories 

Denial of Service (DoS) ping of Death, LAND, neptune, backscatter, smurf, teardrop 

User to Root (U2R) buffer Overflow, loadmodule, perl, rookit 

Remote to Loval (R2L) ftp-write, password guessing, imap, multi-hop, phf, spy, 

warezclient, warezmaster 

Probing ipsweeping, nmap, postsweeping, satan 

Table 3.3 Total instances by attack type in the NSL-KDD Dataset- 

Attack Total Instances in NSL-KDD Dataset Attack Category 

Back 956  

 

 

DoS 

Land 18 

Neptune 41,214 

Pod 201 

Smurf 2646 

Teardrop 892 

Satan 3633 

Ipsweep 3599  

Probe 
Nmap 1493 

Portsweep 2931 

Normal 67,343 Normal 

guess-passwd 53  

 

 

R2L 

ftp-write 8 

Imap 11 

Phf 4 

Multihop 7 

Warezmaster 20 

Warezclient 1020 

Spy 2 

buffer-overflow 30  

U2R 
Loadmodule 9 

Perl 3 

Rootkit 2931 
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3.4 DATA PREPROCESSING 

The NSL-KDD dataset stands out for its clarity, devoid of any noise or missing values, 

ensuring a clean and comprehensive dataset for analysis. However, it presents a 

challenge with a mix of numerical and text values. The numerical values, particularly 

the presence of large numbers, pose potential delays in training and add complexity to 

the processing of the dataset due to the scale and magnitude of these numerical entries. 

3.4.1 Numericalization 

In the NSL-KDD dataset, among its 41 features, 38 are numeric while 3 are non-

numeric, including 'protocol_type', 'service', and 'flag'. To fit these into neural network 

architectures, non-numeric attributes undergo a transformation into numeric forms. 

Take 'protocol_type', for instance, where 'tcp', 'udp', and 'icmp' get encoded into binary 

vectors (1,0,0), (0,1,0), and (0,0,1) respectively, utilizing techniques like the One-Hot-

Encoder to ensure their compatibility with numerical processing. This transformation 

results in a sparse matrix, where each column represents a possible value for a particular 

feature. Similarly, 'service' encompasses 70 attributes, while 'flag' involves 11 

attributes. Employing this conversion approach, the original 41-dimensional feature set 

expands to a 122-dimensional space (comprising 38 numeric, 3 non-numeric, 70 

'service', and 11 'flag' attributes) after the transformation process. (Muhuri et al., 2020). 

Figure 3.2 explain the one hot encoder (Maithem & Al-sultany, 2021) and figure 3.3 is 

the features for protocol type, service, and flag (Saporito, 2019). 

 

Figure 3.2 One hot Encoder on Protocol Type Column (Maithem & Al-sultany, 2021) 
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Figure 3.3 Features for Protocol Type, Service and Flag (Saporito, 2019) 

3.4.2 Normalization 

Certain attributes within the dataset, such as 'duration [0,58329]', 'src_bytes [0,1.3 × 

10^9]', and 'dst_bytes [0,1.3 × 10^9]', showcase a notable difference between their 

maximum and minimum values. To address this variation, a logarithmic scaling 

technique is employed, transforming these ranges into more manageable scales: 

'duration [0,4.77]', 'src_bytes [0,9.11]', and 'dst_bytes [0,9.11]'. Following this, all 

feature values are standardized within the [0,1] range using a linear mapping approach 

based on specific feature maximums and minimums (as denoted by the formula (1)). 

This scaling method ensures consistency and prepares these attributes for seamless 

integration into the neural network model (Yin et al., 2017). 

𝑥𝑖 =  
𝑥𝑖−𝑀𝑖𝑛

𝑀𝑎𝑥−𝑀𝑖𝑛
  (1) 
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3.5 DEEP LEARNING MODELLING 

Choosing the most suitable deep learning models for network intrusion detection is a 

pivotal decision, one that carries significant implications for the overall effectiveness 

of our intrusion detection system. In this section, we'll delve into the criteria we 

meticulously applied to select the specific deep learning models for our research and 

the rationale behind these choices. Our decisions were grounded in a thorough 

evaluation of factors encompassing model performance, insights from previous 

research, and the compatibility of these models with the intricacies of our NSL-KDD 

dataset. 

3.5.1 Criteria For Model Selection 

In this project choice of deep learning models hinged on several critical criteria, 

reflecting the dedication to a robust and effective network intrusion detection system: 

a. Model Performance: Paramount among our criteria was a model's proven 

performance in the demanding realm of intrusion detection. We sought models 

that consistently demonstrated their prowess in achieving high detection 

accuracy, precision, recall, and F1-score.  

b. Previous Research: A diligent review of existing literature served as a guiding 

light in our model selection process. We were keen to build upon the knowledge 

and successes found in previous research studies. Models that had garnered 

recognition for their efficacy and resilience in intrusion detection experiments 

were given precedence. 

c. Suitability to Dataset: The alignment of deep learning models with the unique 

attributes of the NSL-KDD dataset was another pivotal factor in our decision-

making. It was imperative that the chosen models could seamlessly navigate the 

dataset's dimensions, class distribution, and the diverse nature of network traffic 

data. 
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3.5.2 Model Selection 

In this project, we have selected the following deep learning RNN models as the 

keystones of our network intrusion detection research: 

a) Recurrent Neural Networks (Simple-RNN):  

• RNNs, designed for sequential data analysis, are perfectly attuned to the 

temporal nature of network traffic patterns. Their capability to decipher 

evolving sequences of events in network data positions them as a robust choice 

for intrusion detection. Simple RNNs form the backbone of sequential data 

processing, but their struggle with retaining long-term information limits their 

effectiveness in modelling dependencies across lengthy sequences (Shiri et al., 

2023). 

b) Long Short-Term Memory Networks (LSTMs):  

• LSTMs, a specialized variant of RNNs, shine in capturing long-range 

dependencies within sequential data. In our context, they offer the potential to 

decipher intricate, time-delayed intrusion behaviors, thereby enhancing the 

detection process. LSTM tackles the limitations of traditional RNNs by 

introducing a complex memory cell mechanism, allowing for the retention and 

selective management of information over extended sequences through its input, 

forget, and output gates (Shiri et al., 2023). 

c) Gated Recurrent Unit (GRU): 

• GRU simplifies the LSTM architecture by amalgamating the cell and hidden 

states, streamlining the gates into a single "update gate," offering computational 

efficiency without compromising its ability to capture long-term dependencies 

(Shiri et al., 2023). 

The deep learning models chosen are a manifestation of a meticulous selection process, 

woven together by considerations of model performance, insights from previous 

research, and the dataset's unique attributes. Through this approach, we aim to 

undertake a comprehensive exploration of their capabilities and determine the most 

potent models for network intrusion detection within our research context. The selection 

process underlines our commitment to best practices and the relentless pursuit of 

excellence in this dynamic field. 
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3.6 MODEL TRAINING 

Model training represents a critical phase in our research, where we harness the power 

of deep learning to equip our models for network intrusion detection. In this section, we 

elaborate on our approach to training these models, detailing the selection of loss 

functions, optimization algorithms, hyperparameter tuning, and the pivotal role of 

validation and test sets in evaluating model performance. 

1. Lost Functions 

2. Optimization Algorithms 

3. Hyperparameter Tuning 

4. Validation and Test Set 

3.7 MODEL DETECTION 

Within our methodology chapter, the Detection section stands as a pivotal aspect of our 

research pursuit. Here, we delve into the complexities of implementing our 

meticulously chosen deep learning models for network intrusion detection. Our array 

of deep learning models, encompassing distinct architectures like Simple-RNN, Long 

Short-Term Memory Networks (LSTMs), and gated recurrent unit (GRU), will be 

actively employed to address the challenge of intrusion detection. These models have 

undergone rigorous training, ensuring they are equipped with optimized loss functions, 

and finely tuned hyperparameters, all calibrated for peak performance. We'll gauge the 

efficiency of the intrusion detection system by employing a range of performance 

metrics like accuracy, precision, recall, F1-score, and area under the ROC curve. Our 

evaluation aims to measure the capability of the deep learning models, whether used 

independently or in combinations, in effectively recognizing network intrusions while 

striving to reduce false alarms. 
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3.8 MODEL EVALUATION 

The Evaluation section of our methodology is pivotal, as it delves into the processes 

and metrics, we employ to assess the performance of our deep learning models in the 

realm of network intrusion detection. This section provides a comprehensive overview 

of our approach to evaluating model effectiveness. 

To gauge the performance of our deep learning models, we rely on a suite of 

performance metrics, each offering unique insights into the model's behaviour. The key 

metrics we employ include: 

a. Accuracy: This metric assesses the general accuracy of our model's predictions, 

offering an insight into its capability to precisely classify both normal and 

intrusive network traffic. 

b. Precision: Precision measures the accuracy of positive predictions among all 

predictions labeled as positive. It's a crucial gauge of the model's capacity to 

minimize false alarms. 

c. Recall (Sensitivity): Recall measures the proportion of true positives out of all 

actual positives. It indicates the model's effectiveness in capturing instances of 

network intrusion. 

d. F1-Score: The F1-score serves as a comprehensive metric, striking a balance 

between precision and recall, providing a consolidated measure of the model's 

overall performance. 

e. Area under the ROC Curve (AUC-ROC): AUC-ROC provides insights into 

the model's ability to discriminate between normal and intrusive traffic, 

particularly in scenarios where the class distribution is imbalanced. 

In our study, we assessed the efficacy of the proposed Simple-RNN, LSTM, and GRU 

models using various performance metrics: Accuracy (2), Precision (3), Recall (4), and 

F1-score (5). 

Accuracy illustrates the proportion of accurately predicted instances compared to the 

total predictions made. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑝+𝑇𝑛

𝑇𝑝+𝑇𝑛+𝐹𝑝+𝐹𝑛
  (2) 
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Precision reveals the ratio of correctly identified malicious packets to the entire set 

predicted as malicious. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑝

𝑇𝑝+𝐹𝑝
  (3) 

Recall quantifies the fraction of actual malicious packets correctly identified by the 

model. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑝

𝑇𝑝+𝐹𝑛
  (4) 

F1 score computes the harmonic mean of precision and recall, offering a comprehensive 

metric to evaluate the overall classification performance. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2×(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (5) 

The formula above outlines the specific details of these parameters: TP (True Positive), 

TN (True Negative), FP (False Positive), and FN (False Negative) (G.Janani 

Pandeeswari & S. Jeyanthi, 2022).  

3.9 RESULT 

To evaluate the relative performance of different deep learning models, we engage in 

model comparison. This involves a meticulous assessment of each model's performance 

using the same evaluation metrics, enabling us to identify the model or ensemble that 

excels in detecting network intrusions. At the end of summary, when presented in the 

main findings or results chapter, will offer a comprehensive account of our research 

outcomes. By presenting a well-organized and visually appealing overview of the data, 

the performance of deep learning models, comparisons, real-world testing insights, and 

ethical considerations, we aim to provide a holistic understanding of the effectiveness 

of our network intrusion detection system. 
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CHAPTER IV  

 

 

EXPERIMENT AND ANALYSIS 

4.1 INTRODUCTION 

In this section, our project presented the overall of the framework for network intrusion 

detection and introduced the RNN-IDS for 3 types of architecture. We aim to assess 

and evaluate the performance of our model using a comprehensive set of experiments 

conducted on the network intrusion detection dataset (NSL-KDD). Moreover, we 

presented the time of training each of the models which is Simple-RNN, RNN-LSTM 

and RNN-GRU. Each of the models displayed 3 different units of parameter, which is 

64, 128 and 256 units. At the end of the experiments, we employ various metrics such 

as Accuracy, Precision, Recall and F1-score. Accuracy for train-test set, accuracy for 

KDD Testing dataset, and evaluations demonstrated our model’s advantages and 

effectiveness compared to other papers. 

4.2 EXPERIMENT ENVIRONMENT 

In this section, we describe the hardware and software used in carrying out the 

experiments in this project. 

4.2.1 Hardware 

The experiments in this project were carried out on a hardware system running 

Windows 11 Pro Version (22H2). The system has a CPU 12th Gen Intel® Core ™ i7-

12700H 2.70 GHz base speed processor, 40GB of RAM, 1TB Solid-State Drive running 

the operating system, and NVIDIA Geforce RTX3050 for GPU. 
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4.2.2 Software 

In these experiments, Python was the main programming language used for the 

experiments. Anaconda was installed for create an environment and allows us to install 

all the libraries and framework for deep learning. Anaconda Jupyter Notebook used to 

create interactive notebook documents that can contain live code, equations, 

visualizations, media, and other computational outputs. The deep learning framework 

utilized as Keras, an open-source neural network library written in Python, we 

integrated combination with Keras with the popular backed libraries such as 

TensorFlow. For the normalizing data, metric calculations, dataset for train and testing, 

we integrated the Sklearn to run all these experiments. Lastly, any third-party libraries 

such as plotting the graph and load the dataset, reshape the data, we used libraries such 

as Seaborn and Matplotlib, NumPy and Pandas. 

4.3 EXPERIMENTAL DESIGN 

In this experiment, we proposed three types of the model, which is Simple-RNN, LSTM 

and GRU, figure 4.1 (Kasongo, 2022), comparative analysis to the 2-class and 5-class 

experiments. Each of these models we conducted different units of parameter to classify 

instances in the NSL-KDD intrusion dataset. The 2-class classification are normal or 

malicious. Besides that, the 5-class classification are identifying specific types of 

intrusions, namely DoS, Probe, R2L, U2R and normal. At the end of the experiments, 

we compared to the existing model, which is DNN (Liu et al. 2020), and perform each 

of the RNN models analysis, accuracy, and time to choose the most valuable deep 

learning detection for network intrusion. 
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Figure 4.1 RNN/LSTM/GRU Structure (Kasongo, 2022) 

4.3.1 Split The Dataset 

Access to robust NSL-KDD datasets plays a pivotal role in the development and 

evaluation of efficient IDS algorithms. These datasets serve as critical tools for 

researchers and practitioners, enabling comprehensive testing of algorithms across 

diverse attack scenarios. By utilizing IDS datasets, valuable patterns and trends in 

network attacks can be identified, offering insightful perspectives for bolstering overall 

network security (Vanlalruata Hnamte & Hussain, 2023). In this experimental setup, 

two distinct datasets were employed. The initial training of the model utilized the 

KDDTrain+.txt dataset, while the evaluation phase involved the KDDTest+.txt dataset. 

Further evaluation was performed by splitting the original training set into two 

segments: one for training the model and the other for testing its performance, more 

info discussed in section 4.3.3. This meticulous approach focused on assessing the 

intrusion detection model, emphasizing high accuracy and a minimal false alarm rate. 

A detailed breakdown of attack classifications into 2-class and 5-class categories is 

illustrated starting from the tables 4.1, 4.2, 4.3 and 4.4. Figures 4.2, 4.3, 4.4 and 4.5 are 

the pie chart for each of the train and test dataset attacks (Lokesh Karanam et al., 2020). 
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a. KDDTrain+ Dataset 

i. 2-class classification (binary-class) 

Table 4.1 Binary-Class for Train Dataset 

Attack Total Percentage Intrusion (Label) 

Normal 67343 53.46% 1 

Malicious 58630 46.54% 0 

 

Figure 4.2 Pie Chart for Binary-Class Train Dataset  
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ii. 5-class classification (multi-class) 

Table 4.2 Multi-Class for Train Dataset 

Attack Total Percentage Intrusion (Label) 

DoS 45927 36.46% 0 

Probe 11656 9.25% 1 

R2L 995 0.79% 2 

U2R 52 0.04% 3 

Normal 67343 53.46% 4 

 

Figure 4.3 Pie Chart for Multi-Class Train Dataset 
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b. KDDTest+ Dataset 

i. 2-class classification (binary-class) 

Table 4.3 Binary-Class for Test Dataset 

Attack Total Percentage Intrusion (Label) 

Normal 9711 43.08% 1 

Malicious 12833 56.92% 0 

 

Figure 4.4 Pie Chart for Binary-Class Test Dataset 
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ii. 5-class classification (multi-class) 

Table 4.4 Multi-Class for Test Dataset 

Attack Total Percentage Intrusion (Label) 

DoS 7460 33.09% 0 

Probe 2421 10.74% 1 

R2L 2885 12.80% 2 

U2R 67 0.30% 3 

Normal 9711 43.08% 4 

 

Figure 4.5 Pie Chart for Multi-Class Test Dataset 
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4.3.2 Data Preprocessing 

Data preprocessing plays a pivotal role in preparing datasets for machine learning by 

transforming them into an appropriate format. This procedure encompasses multiple 

steps, starting with assessing the data quality, followed by cleansing the dataset by 

eliminating any corrupt or erroneous data entries. The subsequent phases involve data 

transformation and ultimately data reduction to streamline the dataset for analysis. In 

our approach, we applied One-hot-encoding specifically to categorize the columns 

related to protocol_type, service, and flag, facilitating efficient handling of categorical 

data within the dataset. In the figure 4.6 below, we demonstrate for one-hot-encoding. 

 

Figure 4.6 One-Hot-Encoding 

4.3.3 Data Separation 

The dataset comprises an extensive volume of data, necessitating a focus on high-

quality data for this project's objectives. To ensure this, the data is divided into two 

distinct categories: the training dataset and the testing dataset. Within this project's 

framework, 80% of the training dataset is allocated for training purposes, while the 

remaining 20% is reserved for testing and development phases. This Train-Test Split 

methodology serves the purpose of preventing data overfitting, ensuring that the 
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model's performance extends beyond just the training data, ultimately enhancing its 

generalizability. Figure 4.7 below shows the train-test split to 80% and 20%. 

 

Figure 4.7 Train-Test Split 

4.3.4 Reshape the Train and Test Dataset 

The code modifies the structure of the input data to fit a specific format commonly used 

in machine learning tasks, particularly for analyzing sequences or time-series data. In 

the figure 4.8, it reshapes the x_train and x_test datasets into a 3D shape of [samples, 

time steps, features]. This format, typical for sequences: 

a. Defines samples as the number of observations. 

b. Represents time steps as the sequence length. 

c. Depicts features as the number of variables per time step.  

 

Figure 4.8 Reshape the Crucial 

4.4 HYPERPARAMETER TUNING 

Hyperparameters represent predefined settings established before training begins, 

distinct from parameters learned from data during the training process. It's exerted 

influence over various aspects of the learning algorithm's behaviour, including the 

model's complexity, learning rate, and its ability to discern patterns within the dataset. 
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4.4.1 Parameters 

We used the 3 hidden layers to train our RNN models, with the following parameters 

which is (64, 64, 64), (128, 128, 128), and (256, 256, 256) used in our intrusion 

detection models: Simple-RNN, LSTM, and GRU. We employed the sigmoid and 

softmax activation functions and implemented the Adam optimizer during our 

experimental setup. We used binary_crossentropy and categorical_crossentropy for loss 

fuction. Sigmoid & binary_crossentropy for 2-class classification and softmax & 

categorical_crossentropy for 5-class classification. 

4.4.2 Sigmoid 

The sigmoid function, labelled as σ(z), serves as an activation function that transforms 

real numbers into values within the 0 to 1 range. This mathematical operation, defined 

by formula (6), finds extensive use in binary classification scenarios by computing 

probabilities. By compressing input values, the sigmoid function readies them for tasks 

involving binary categorization. Nonetheless, it comes with a drawback: when 'z' 

reaches extremely high or low values, the sigmoid function triggers vanishing gradients. 

This issue, where the gradient becomes exceedingly minute, contributes to a slowdown 

in training deep neural networks. (Furnieles, 2022). 

(𝑧) =  
1

1+𝑒− 𝑍  (6) 

4.4.3 Softmax 

The softmax function use to classify the output for multiclass classification 

responsibilities. Its primary function involves taking a set of varied real-valued scores 

and transforming them into probabilities, ensuring that their collective sum amounts to 

1. Formula (7) delineates the mechanics of the softmax function, where 'z' signifies the 

input vector, while 'K' stands for the count of classes involved. Particularly beneficial 

in scenarios encompassing multiple classes, softmax shines by generating a 

comprehensive probability distribution across all available classes. Its widespread 

adoption extends to neural networks, where it frequently assumes the role of the output 
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layer activation function to address the complexities of multiclass classification 

(Furnieles, 2022). 

(𝑧𝑖) =  
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝐾

𝑗=1

  (7) 

4.4.4 Dropout Layer 

Dropout is a regularization technique used in neural networks to prevent overfitting. 

During training, random neurons (nodes) in the network are ignored or "dropped out" 

with a certain probability. This prevents any one neuron from becoming too influential 

in the network, forcing the network to learn more robust features. It essentially helps in 

creating a more generalized model (Chollet, 2018). 

4.4.5 Dense Layer 

A dense layer is a fully connected layer in a neural network. Each neuron in a dense 

layer receives input from every neuron of the previous layer, hence forming a dense 

connection between them. These layers perform a linear operation on the input data 

followed by a non-linear activation function, allowing the network to learn complex 

patterns in the data (Chollet, 2018). 

4.4.6 Flatten Layer 

The flatten layer is used to convert multidimensional data into a one-dimensional array. 

In neural networks, especially when transitioning from convolutional layers (which 

work with 3D data like images) to fully connected dense layers (which expect 1D input), 

the flatten layer reshapes the data without altering its content. For instance, in image 

processing, it takes a 2D array (image) and transforms it into a 1D array to be fed into 

a dense layer (Chollet, 2018). 
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4.5 ANALYSIS OF EXPERIMENT RESULTS 

In this project, we performed six sets RNN model of experiments, namely Simple-RNN-

2-class, LSTM-2-class, GRU-2-class, Simple-RNN-5-class, LSTM-5-class, and GRU-

5-class. For these six sets experiments, we tested for different type units of parameter 

and classification, at the end we will have 18 experiment results. All these experiments 

used the official training dataset and evaluate the performance of the models on the 

testing dataset, it’s essential to considered metrics for Accuracy, Precision, Recall, F1-

score, and AUC-ROC. In our experiment, we used 128 batch size and 50 epochs to train 

each of the model performance. 

4.5.1 Experiment Architecture 

In figure 4.9 below, there is a diagram for the whole of the experiments we used. There 

are 3 different inputs layer from the start, which is RNN, LSTM, and GRU. In the 

middle of the diagram, there are 3 hidden layers of the model, and each of the 

experiment parameters is (64, 64, 64), (128, 128, 128) and (256, 256, 256). In the section 

below, we provided the model summary 2-class & 5 class for each of the model. 

 

Figure 4.9 RNN Diagram for the Experiments 
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4.5.2 2-Class of Model Summary 

In the figure 4.10, 4.11 and 4.12, these are the model summary for RNN, LSTM and 

GRU for 2-class 64 units parameters. 

 

Figure 4.10 RNN 2-Class 64 Units 
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Figure 4.11 LSTM 2-Class 64 Units 

 

Figure 4.12 GRU 2-Class 64 Units 
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In the figure 4.13, 4.14 and 4.15, these are the model summary for RNN, LSTM and 

GRU for 2-class 128 units parameters. 

 

Figure 4.13 RNN 2-Class 128 Units 

 

Figure 4.14 LSTM 2-Class 128 Units 
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Figure 4.15 GRU 2-Class 128 Units 

In the figure 4.16, 4.17 and 4.18, these are the model summary for RNN, LSTM and 

GRU for 2-class 256 units parameters. 

 

Figure 4.16 RNN 2-Class 256 Units 
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Figure 4.17 LSTM 2-Class 256 Units 

 

Figure 4.18 GRU 2-Class 256 Units 
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4.5.3 5-Class of Model Summary 

In the figure 4.19, 4.20 and 4.21, these are the model summary for RNN, LSTM and 

GRU for 5-class 64 units parameters. 

 

Figure 4.19 RNN 5-Class 64 Units Pus
at 

Sum
be

r 

FTSM



77 

 

 

Figure 4.20 LSTM 5-Class 64 Units 

 

Figure 4.21 GRU 5-Class 64 Units 
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In the figure 4.22, 4.23 and 4.24, these are the model summary for RNN, LSTM and 

GRU for 5-class 128 units parameters. 

 

Figure 4.22 RNN 5-Class 128 Units 

 

Figure 4.23 LSTM 5-Class 128 Units 
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Figure 4.24 GRU 5-Class 128 Units 
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In the figure 4.25, 4.26 and 4.27, these are the model summary for RNN, LSTM and 

GRU for 5-class 256 units parameters. 

 

Figure 4.25 RNN 5-Class 256 Units 

 

Figure 4.26 LSTM 5-Class 256 Units 
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Figure 4.27 GRU 5-Class 256 Units 
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